首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 110 毫秒
1.
TiAl基合金与Ni基合金钎焊连接接头界面组织及性能   总被引:1,自引:0,他引:1  
采用BNi2钎料实现了TiAl基合金与Ni基高温合金的钎焊。采用扫描电镜、能谱分析和X射线衍射等手段对钎焊接头的界面组织结构及生成相进行分析,并对接头的抗剪强度进行测试。结果表明,钎焊接头的典型界面结构为:GH99/(Ni)ss (γ)+Ni3B+CrB+富Ti-硼化物/TiNi2Al/TiNiAl+Ti3Al/TiAl;随着钎焊温度的升高或保温时间的延长,较多的B和Si元素扩散进入两侧母材,导致钎缝中硼化物数量减少,而TiAl/钎缝界面的TiNi2Al和TiNiAl+Ti3Al金属间化合物层厚度增加;当钎焊温度为1050 ℃,保温时间为5 min时,接头的抗剪强度达到最大为205 MPa,接头主要断裂于TiNiAl金属间化合物层。当钎焊温度升高或保温时间继续延长时,TiNiAl厚度显著增加,导致接头强度下降  相似文献   

2.
TiAl/Ni基合金反应钎焊接头的微观组织及剪切强度(英文)   总被引:1,自引:0,他引:1  
以Ti为中间层,对TiAl基金属间化合物与Ni基高温合金进行反应钎焊连接,研究反应钎焊接头的界面微观结构及剪切强度。通过实验发现,熔融中间层与两侧母材反应剧烈,生成连续的界面反应层。典型的界面微观结构为GH99/(Ni,Cr)ss(γ)/TiNi(β2)+TiNi2Al(τ4)+Ti2Ni(δ)/δ+Ti3Al(α2)+Al3NiTi2(τ3)/α2+τ3/TiAl。当钎焊温度为1000°C,保温时间10min时,所得接头的剪切强度最高为258MPa。进一步升高钎焊温度或延长保温时间,会引起钎缝组织中组成相粗化和脆性金属间化合物层的生成,从而导致接头剪切强度的降低。  相似文献   

3.
研究了Ti3Al基合金真空钎焊及接头组织性能;分析了不同钎料对接头界面组织和剪切强度的影响,初步优选了钎料,优化了钎焊连接规范参数;利用电子探针、扫描电镜和X射线衍射等方法对接头进行了定性和定量分析.结果表明:采用NiCrSiB钎料连接时,在界面处有金属间化合物TiAl3、AlNi2Ti和Ni基固溶体生成,TiAl3和AlNi2Ti的生成降低了接头的剪切强度;采用TiZrNiCu钎料连接时,在界面处有金属间化合物Ti2Ni、Ti(Cu,Al)2和Ti基固溶体生成,Ti2Ni和Ti(Cu,Al)2的形成降低了接头的剪切强度;采用AgCuZn钎料连接时,在界面处生成TiCu、Ti(Cu,Al)2和Ag基固溶体,TiCu和Ti(Cu,Al)2的生成是降低接头剪切强度的主要原因;采用CuP钎料连接时,在界面处生成了Cu3P、TiCu和Cu基固溶体,CuaP和TiCu使接头的剪切强度降低;对于NiCrSiB钎料,当连接温度为1 373 K,连接时间为5 min时,接头的剪切强度最高为219.6 MPa对于TiZr-NiCu钎料,当连接温度为1 323 K,连接时间为5 min时,接头的最高剪切强度为259.6 MPa;对于AgCuZn钎料,当连接温度为1 173 K,连接时间为5 min时,接头的最高剪切强度为125.4 MPa;对于CuP钎料,当连接温度为1 223 K,连接时间为5 min时,接头的最高剪切强度为98.6 MPa;采用TiZrNiCu钎料连接Ti3Al可获得最大接头强度.  相似文献   

4.
采用Ag-Cu钎料与Ti-Zr-Ni-Cu钎料,对TiAl与Ti合金进行了真空钎焊试验,主要研究了采用两种钎料时的界面反应以及钎焊温度对界面组织及性能的影响.研究发现,采用Ag-Cu钎料时界面结构为:Ti/Ti(Cu,Al)2/TiCux Ag(s,s)/Ag(s,s)/Ti(Cu,Al)2/TiAl,当钎焊温度T=1 223 K,保温时间t=10 min时接头的剪切强度达到223.3 MPa;采用Ti-Zr-Ni-Cu钎料时在界面出现了Ti2Ni,Ti(Cu,Al)2等多种金属间化合物,当钎焊温度T=1 123 K,保温时间t=10 min时接头的剪切强度达到139.97 MPa.  相似文献   

5.
采用Ti-28Ni(wt.%)共晶钎料在1100℃实现了高铌TiAl合金(Ti-45Al-8.5Nb-(W, B, Y) (at.%), 简称TAN)的真空钎焊连接。钎焊接头的典型界面结构为TAN/τ3-Al3Ti2Ni + B2/α2-Ti3Al layer/α2-Ti3Al + δ-Ti2Ni/α2-Ti3Al layer/τ3-Al3Ti2Ni + B2/TAN。深入研究了保温时间对钎焊接头界面组织和连接性能的影响。结果表明:Ni元素从熔融钎料向TAN母材的扩散决定了界面组织的演化,随着保温时间的延长促进了扩散层的增厚,同时导致钎缝宽度逐渐减小。接头剪切强度测试结果显示当保温时间为15分钟时,获得的最大接头室温剪切强度和高温(600℃)剪切强度分别是248.6MPa和166.4MPa。接头断口分析表明在剪切实验中裂纹主要沿着连续的金属间化合物层产生和扩展。  相似文献   

6.
采用Ni-34Ti共晶钎料实现了TiAl合金的钎焊连接,分析了TiAl合金钎焊接头的界面结构,重点研究了钎焊温度对接头组织及性能的影响规律.结果表明,Ni-34Ti共晶钎料主要由TiNi相和TiNi3相组成,钎料熔点为1 120 ℃.不同钎焊温度下获得的接头界面组织均呈现对称特征,无气孔和裂纹等缺陷,接头中主要形成了TiNiAl2,B2,TiNiAl和TiNi2Al四种物相.Al元素在钎缝中的快速扩散,促进了钎缝中Ti-Ni-Al三元化合物的形成.钎焊温度为1 180 ℃保温10 min条件下,TiAl合金接头获得了最大的室温抗剪强度87 MPa.剪切过程中,裂纹容易在富含TiNi2Al相的区域产生和扩展,大量脆性TiNi2Al相的存在对接头的性能是有害的.  相似文献   

7.
设计并采用Zn-Al-Ti系列钎料对Cu和Al异种金属实施了钎焊,并对Zn-22Al-xTi/Cu界面处的相组成和金属间化合物形貌进行了分析。结果表明:在Zn-22Al中添加0.01%至0.05%的Ti可以显著细化钎料组织,而且Zn-22Al-0.03Ti在Cu基板上的铺展面积比Zn-22Al高出60.4%,但Ti的添加会提高Zn-22Al钎料的熔点和熔化区间。另外,在钎料中添加微量的Ti可以优化Cu/Al接头中Cu侧界面化合物的组织并减小其厚度。相比Zn-22Al钎料,Zn-22Al-0.03Ti钎焊所得Cu/Al接头强度要高出13.4%,而且接头断裂位置由化合物层转移至钎料内部。X射线衍射结果显示,钎焊过程中有CuAl2,Cu9Al4,CuZn 3种化合物产生于钎料与Cu基板界面处  相似文献   

8.
以Ti为中间层实现了TiAl与Ni基合金的接触反应钎焊。采用扫描电镜和电子探针等手段对钎焊接头的界面结构及生成相进行分析,并对接头剪切强度进行测试。结果表明:当钎焊温度为960℃时,钎缝主要由Tiss和Ti2Ni组成;当钎焊温度从960℃升高到1000℃时,钎缝中生成Ti-Al及Al-Ni-Ti化合物,典型界面结构为:GH99/(Ni,Cr)ss/Ti2Ni+AlNi2Ti+TiNi/Ti3Al+Al3NiTi2/Ti3Al+Al3NiTi2/TiAl;钎焊温度继续升高,Ti3Al和Al3NiTi2变得粗大,导致接头性能下降。当钎焊温度为1000℃,保温10min时,接头剪切强度达到最大值233MPa。随钎焊温度的升高,钎缝厚度先增加后减小。  相似文献   

9.
采用纯钛箔做中间层扩散连接TiAl合金与镍基高温合金(GH99).利用扫描电镜、电子探针和X射线衍射等手段对界面产物及接头的界面结构进行分析.结果表明,GH99/Ti界面主要由四个反应层组成,分别为(Ni,Cr)ss,富Ti-(Ni,Cr)ss,TiNi和Ti2Ni.当保温时间较短时,Ti/TiAl界面反应层主要为Ti(Al)ss.延长保温时间,此界面反应层转化为Ti3Al和Al3NiTi2.随着保温时间的延长,TiNi反应层厚度持续增加,而Ti2Ni反应层厚度先增加后减小.随保温时间的延长接头的抗剪强度先增加后减小,然后又增加.由接头断口形貌可以看出,接头主要断裂于Ti2Ni反应层.  相似文献   

10.
TiAl合金与镍基高温合金的扩散连接   总被引:2,自引:2,他引:0       下载免费PDF全文
采用钛为中间层,对TiAl合金与镍基高温合金(GH99)进了扩散连接.研究了扩散连接接头的界面结构和连接温度对界面结构及连接性能的影响,并对连接界面反应层的形成机制进行探讨.结果表明,GH99/Ti/TiAl的界面结构为:GH99/(Ni,Cr)ss/富Ti-(Ni,Cr)ss/TiNi/Ti2Ni/α-Ti+Ti2Ni/Ti(Al)ss/TiAl+Ti3Al/TiAl;随着连接温度的升高,各反应层厚度增加,接头的抗剪强度先增加后减小;在连接温度1 173 K,连接时间30 min,连接压力20 MPa时,抗剪强度最高为260.7 MPa.  相似文献   

11.
TiNiB高温钎料钎焊TiAl基合金接头微观组织   总被引:3,自引:3,他引:0       下载免费PDF全文
采用电弧熔炼TiNiB合金作为高温钎料对TiAl合金进行钎焊,研究了接头界面组织的形成及其随钎焊温度变化的演化过程.电弧熔炼的TiNiB合金钎料主要由Ti-Ni与TiNi3共晶组织及弥散分布的块状TiB2组成,DTA测试曲线表明钎料的熔点为1 120℃.钎焊过程中,TiAl基体向液态钎料中的溶解量决定了钎焊接头界面组织的形成及其演化过程.随着活性元素Ti和Al向液态钎料溶解量的增加,靠近钎缝侧的TiAl基体发生固态相变转化为β层;钎缝组织演化为Ti-Al-Ni三元化合物,并伴有少量的β相;块状的TiB2在过量活性元素Ti存在的情况下逐渐转变为长条状的TiB相.  相似文献   

12.
采用Ag-Cu-Ti钎料对常压烧结的SiC陶瓷与TiAl金属间化合物进行了真空钎焊,并对接头的微观组织和室温强度进行了研究。结果表明,利用Ag-Cu-Ti钎料可以实现SiC与TiAl的连接;接头界面具有明显的层状结构,即由Ti-Cu-Si合金层、富Cu相与富Ag相的双相层和Ti-Al-Cu合金层组成;在1173K和10min的钎焊条件下,接头室温剪切强度达到173MPa。  相似文献   

13.
采用Ti/Ni复合中间层实现了TiAl合金和Ti3AlC2陶瓷的扩散连接,利用SEM,XRD等分析方法对接头界面结构进行了分析.结果表明,TiAl/Ti3AlC2接头典型界面结构为TiAl/Ti3Al+Al3NiTi2/Ti3Al/α-Ti+Ti2Ni/Ti2Ni/TiNi/Ni3Ti/Ni/Ni3(Ti,Al)/Ni3Al+TiCx+Ti3AlC2/Ti3AlC2.随着连接温度的升高,TiAl/Ti界面处的Tiss层逐渐减小,Ti3Al化合物层逐渐变厚;TiNi化合物层厚度显著增加,Ti2Ni和Ni3Ti层厚度基本保持不变.接头抗剪强度随连接温度升高先增加后减小,当连接温度为850℃时,接头的抗剪强度最高可达到85.3 MPa.接头主要在Ni/Ti3AlC2界面及Ti3AlC2基体处发生断裂.  相似文献   

14.
In this study, TiB2 cermet and TiAl-based alloy are vacuum brazed successfully by using Ag-Cu-Ti filler metal.The microstructural analyses indicate that two reaction products, Ti ( Cu, Al ) 2 and Ag bused solid solution ( Ag ( s. s ) ) , are present in the brazing seam, and the iuterface structure of the brazed joint is TiB2/TiB2 Ag ( s. s ) /Ag ( s. s ) Ti ( Cu,Al)2/Ti( Cu, Al)2/TiAl. The experimental results show that the shear strength of the brazed TiB2/TiAl joints decreases us thebrazing time increases at a definite brazing temperature. When the joint is brazed at 1 223 K for 5 min, a joint strength up to 173 MPa is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号