首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
多种氧化物原位反应制备的Al2O3/Al复合材料   总被引:3,自引:0,他引:3  
提出了多种氧化物与Al原位反应制备陶瓷颗粒增强铝基复合材料的新方法,并通过3种反应体系CuO/Al,(CuO SiO2)/Al,(CuO SiO2 TiO2)/Al制备了3种铝基复合材料。对原位反应过程进行了热力学分析。对复合材料的显微组织、硬度和力学性能进行了分析和研究。结果表明,多种氧化物与Al的原位反应能发生并自动进行下去,其反应状况良好。(CuO SiO2)/Al,(CuO SiO2 TiO2)/Al原位反应所获得的增强相颗粒分别是Al2O3和Al2O3 Al3Ti,增强相颗粒在复合材料中均匀分布,并且其所制得的复合材料的硬度与力学性能明显好于单一氧化物CuO所制得的复合材料。  相似文献   

2.
综述了TiN/Al2O3,AlN/Al2O3以及(TiN,AlN)/Al2O3复合材料的研究现状。并指出颗粒增韧是复相陶瓷材料增韧最简单的方式之一,其中纳米复合、纳微米复合、多相复合是实现颗粒增韧的有效途径。在复相陶瓷的制备中,原位反应烧结是很有希望的技术,可以直接在基体中生成弥散分布的超细第二相颗粒,而使复合材料的性能大幅度提高。  相似文献   

3.
采用原位反应液相线铸造法制备Al2O3(p)/Al-Cu复合材料,并对反应进行了热力学分析.结果表明,熔体温度升高时,反应的诱导时间缩短;适量的引发剂能使反应诱导时间缩短;加大稀释剂量,反应诱导时间延长;原位Al2O3颗粒对该复合材料组织有细化和均匀化作用,当原位Al2O3颗粒含量达到5.3%时可得到细小均匀的蔷薇状组织;原位反应液相线铸造Al2O3(p)/Al-Cu复合材料的抗拉强度是纯铝的近2倍,但伸长率降低.  相似文献   

4.
利用Al Zr(CO3)2原位反应体系,采用熔体反应法制备了(Al3Zr Al2O3)p/Al复合材料。XRD及SEM分析显示:原位反应生成的颗粒为Al3Zr和Al2O3,颗粒细小并均匀分布在基体中。拉伸实验表明:(Al3Zr Al2O3)p/Al复合材料的抗拉强度和屈服强度随颗粒含量的增大显著提高,当颗粒体积分数为10%时,复合材料的抗拉强度和屈服强度分别为148.3MPa和110.5MPa,但延伸率先上升后下降。原位拉伸研究表明:复合材料拉伸过程中裂纹的萌生及扩展机制可从两方面得到解释:滑移过程中的位错作用机制以及颗粒脱粘和破碎形成的"孔洞"成核与长大机制。  相似文献   

5.
综合搅拌铸造法和原位反应制备了Al2O3颗粒增强Al-4Mg基复合材料,并对制备的Al-4Mg基复合材料进行了透射电镜(TEM)观察分析,发现Al2O3/Al之间不存在固定的位向关系,但存在如下优先的位向关系:(1210)Al2O3∥(111)Al,[1012]Al2O3∥[112]Al,[2021]Al2O3∥[101]Al.  相似文献   

6.
Al-Zr(CO3)2体系反应合成复合材料的力学性能与断裂行为   总被引:1,自引:1,他引:1  
利用Al-Zr(CO3)2原位反应体系,采用熔体反应法制备了(Al3Zr Al2O3)p/Al复合材料.XRD及SEM分析显示:原位反应生成的颗粒为Al3Zr和Al2O3,颗粒细小并均匀分布在基体中.拉伸实验表明:(Al3Zr Al2O3)p/Al复合材料的抗拉强度和屈服强度随颗粒含量的增大显著提高,当颗粒体积分数为10%时,复合材料的抗拉强度和屈服强度分别为148.3 MPa和110.5 MPa,但延伸率先上升后下降.原位拉伸研究表明:复合材料拉伸过程中裂纹的萌生及扩展机制可从两方面得到解释:滑移过程中的位错作用机制以及颗粒脱粘和破碎形成的"孔洞"成核与长大机制.  相似文献   

7.
江润莲  赵玉涛  陈红梅 《铸造》2006,55(11):1149-1151,1169
运用Al-Zr(CO3)2体系熔体反应法制备了(Al3Zr+Al2O3)p/Al合材料,研究了(Al3Zr+Al2O3)p/Al复合材料的力学和磨损性能。结果表明:Al-Zr(CO3)2与Al熔体反应生成了Al2O3、Al3Zr颗粒;(Al3Zr+Al2O3)g/A复合材料的抗拉强度和屈服强度随颗粒理论体积分数的增大而提高,当颗粒体积分数为10%时,复合材料的Rm为148.3MPa,较铝基体提高了90.1%,复合材料的Rp02为110.5MPa,较铝基体的提高了163.1%,复合材料的断后伸长率先升后降;由复合材料的拉伸断口SEM可知:随着反应物质量增加,塑性变形区减小,但仍是塑性断裂;由磨损表面SEM观察表明:(Al3Zr+Al2O3)p/Al复合材料的磨损特征为黏着磨损和磨粒磨损的混合型磨损。  相似文献   

8.
Al—ZrOCl2反应体系制备ZrAl3(p)+Al2O3(p)/Al复合材料   总被引:11,自引:4,他引:7  
从Al-ZrOCl2体系利用熔体直接反应法制备了原位ZrAl3和Al2O3颗粒增强铝基复合材料。Al-Zr-O体系中原位形成的ZrAl3具有四方结构,其最大尺寸为4μm,纵横长度比小于2.0,此外,还有一定数量的亚微米级Al2O3颗粒生成,其晶体为六方结构,纵横长度比大于2.0.ZrAl3(p),Al2O3(p)/Al复合材料凝固组织,随ZrOCl2加入量的增加,生成的颗粒尺寸更小,分布更均匀,拉伸试验表明,Al-ZrOCl2体系的复合材料具有高度的强度和逆性,断口组织存在大量韧窝,韧窝中镶嵌嵌着细小颗粒,属韧性断裂。  相似文献   

9.
从Al ZrOCl2 体系利用熔体直接反应法制备了原位ZrAl3 和Al2 O3 颗粒增强铝基复合材料。Al Zr O体系中原位形成的ZrAl3 具有四方结构 ,其最大尺寸为 4μm ,纵横长度比小于 2 .0。此外 ,还有一定数量的亚微米级Al2 O3 颗粒生成 ,其晶体为六方结构 ,纵横长度比大于 2 .0。ZrAl3(p) ,Al2 O3(p) /Al复合材料凝固组织中 ,随ZrOCl2加入量的增加 ,生成的颗粒尺寸更小 ,分布更均匀。拉伸试验表明 :Al ZrOCl2 体系制备的复合材料具有高的强度和塑性 ,断口组织中存在大量韧窝 ,韧窝中镶嵌着细小颗粒 ,属韧性断裂。  相似文献   

10.
赵玉涛  孙国雄 《铸造》2001,50(1):29-32
对Al-ZrOCl2体系采用熔体反应制备Al3Zr(p)、Al2O3(p)/A356复合材料。结果表明,原位生成的Al3Zr和Al2O3均为多面体位粒,且Al3Zr表面存在生长小面(facet)。复合材料凝固组织中ZrOCl2加入量的增加,颗粒分数增大,颗粒分布更均匀。但反应温度高于900℃时,Al3Zr颗粒出现板块状集聚生长,拉伸试验表明,Al3Zr(p)、Al2O3(p)/A356复合材料具有比基体更高的抗拉强度,并随ZrOCl2加入量的增加而提高,其拉伸断口为混合型断裂。  相似文献   

11.
以Mo、Al、Si和Mo O_34种粉末为原料,通过燃烧合成和真空热压烧结工艺原位制备了(Si_(1-x)Al_x)_2/Al_2O_3复合材料,分析了其燃烧模式、产物相结构、微观组织和力学性能。结果表明:添加Al之后坯体的燃烧合成反应更加剧烈,燃烧模式由螺旋模式转入混沌模式。随着合金化Al含量的增加,基体相结构由C11_b型Mo Si_2转变为C40型Mo(Si,Al)_2,并且在所有复合材料中都可以鉴别出Al_2O_3衍射峰,表明通过燃烧合成技术原位制备了Mo(Si_(1-x)Al_x)_2/Al_2O_3复合材料。复合材料的断裂韧性和抗弯强度最高分别达到4.25 MPa·m~(1/2)和346 MPa,比纯Mo Si_2提高了39%和60%。复合材料的强韧化机制主要有Al合金化强韧化、Al_2O_3第二相颗粒弥散强韧化、玻璃相的消除以及断裂方式的转变。  相似文献   

12.
高温反应烧结制备Al2O3-TiC/Al原位复合材料   总被引:5,自引:1,他引:4  
以AlTiO2反应体系为基础,添加适量石墨粉,压制后在不同温度下进行反应烧结,从而确定了获得反应完全的Al2O3TiC/Al铝基复合材料的烧结工艺参数,并对该复合材料的组织性能及反应机理进行了分析讨论。结果表明:碳的加入可完全抑制条状和大块状Al3Ti相的形成;AlTiO2C体系在1200℃反应烧结后,可制得硬度较高的Al2O3TiC/Al原位复合材料,其显微组织中Al2O3和TiC颗粒尺寸小于2μm。  相似文献   

13.
采用溶胶-凝胶法制备氧化铝颗粒增强的钼基复合材料.测定了钼基体的显微硬度;用SEM,TEM及XRD分别对混合粉体与坯体进行了微观分析;用销盘式摩擦磨损试验机测定了复合材料的滑动磨损性能.结果表明:在复合粉体及其材料中,Al2O3作为分散相具有细化晶粒的作用,随氧化铝体积分数增加,钼基体显微硬度增加,复合材料摩擦系数缓慢降低,磨损量先增加后减少,一定程度上改善了材料的磨损性能.  相似文献   

14.
本文利用旋涡制造颗粒增强铝基复合材料 ,探讨了增强颗粒的添加对基体凝固组织的影响 ,对比了添加SiO2 (SiO2 和铝液发生下式反应 :3SiO2 4Al—→ 3Si 2Al2 O3 )和Al2 O3 复合材料的增强颗粒分布。实验结果表明 ,由于颗粒的存在 ,晶体的生长受到影响 ,导致组织细化。添加SiO2 复合材料的增强颗粒分布比添加Al2 O3 复合材料的增强颗粒分布更易均匀  相似文献   

15.
分别将陶瓷元件嵌入凝胶注模成型后的SiC预制型中,再采用气压浸渗T艺制备高体积分数SiCp/Al复合材料的同时,实现了复合材料与元件的原位连接.采用SEM、EDS和XRD等分析了连接界面的显微组织及界面反应,结果表明:SiCp/AI与元件间的界面反应产物由MgAl204和Mg3Al2(SiO4)3等组成,界面反应层厚度约2~3μm,产物生成量主要由Al合金中的Mg、元件中SiO2含量等因素决定;SiCp/Al复合材料与Al2O3元件通过气压浸渗可以实现有效的反应连接.  相似文献   

16.
为发展WC-Ni3Al-B复合材料的液相烧结制备技术,研究由羰基Ni粉、分析纯Al粉和粗WC粉的混合粉末反应合成制备的WC+Ni3Al预合金粉末。采用DSC和XRD分别研究3Ni+Al和70%WC+(3Ni+Al)混合粉末在550~1200°C和25~1400°C温度范围的相变过程。结果表明:Ni3Al相的形成取决于反应温度。在200~660°C热处理温度范围内,除了WC相外,还存在Ni2Al3、NiAl和Ni3Al相;而在660~1100°C温度范围内,仅存在NiAl和Ni3Al相;在1100~1200°C温度范围可以获得均匀的WC+Ni3Al预合金粉末混合物。采用该预合金粉末制备的WC-30%(Ni3Al-B)复合材料具有很高的致密度,且WC晶粒呈圆形。与普通商用YGR45(WC-30%(Co-Ni-Cr))相比,WC-30%(Ni3Al-B)复合材料具有更高的硬度(9.7GPa),低的抗弯强度(1800MPa)和相近的断裂韧性(18MPa.m1/2)。  相似文献   

17.
在7050合金的基础上,使用铸锭冶金工艺制备镍含量为 5%,10%的 2 种复合材料,研究 Al3Ni 相的细化机制。通过硬度测试,金相观察,SEM,DSC 等测试手段分析其组织及性能。结果表明该材料的硬度在 T6 时效后分别达到 1918 MPa(5%镍)和 2364MPa(10%镍),高于 7050 合金(1800 MPa)。材料断口观察结果显示,器断裂机制主要为 Al3Ni 相的沿晶脆性断裂及与基体界面分离 2种断裂模式。退火及轧制工艺对材料性能的影响主要为:长时间退火处理可使 Al3Ni 相明显细化,并使其球化。随着退火时间的延长,材料的硬度先增加后减小;经过多道次的冷轧/热轧工艺,Al3Ni 沉淀相逐步细化,由长棒状被破碎为大小相似的颗粒。  相似文献   

18.
1 INTRODUCTIONAstheparticlereinforcedaluminummatrixcompositesaresuperiorinstrengthandwearresistance,theapplicationsofthecompositeshavebeenadvancedinmanyaspects,suchasinautomobilepartsandsportsarticles[1~3].However,forthemassiveproductionofthecompos…  相似文献   

19.
Al2O3/ZrO2(Y2O3)复合材料断裂过程中的相变及力学性能   总被引:6,自引:0,他引:6  
用真空烧结方法制备了Al2O3/ZrO2(Y2O3)复合材料,分析了ZrO2(3Y)和ZrO2(2Y)含量对Al2O3基陶瓷抗弯强度、断裂韧性的影响.用XRD定量分析了含摩尔分数2%与3%Y2O3的ZrO2(2Y)与ZrO2(BY)在断裂过程中四方相转变成单斜相的相变量,用以阐明增韧机制.结果表明,在ZrO2含量为15%(体积分数)时,Al2O3/ZrO2(3Y)和Al2O3/ZrO2(2Y)复合材料的抗弯强度、断裂韧性分别达到825MPa,7.8MPa·m1/2和738MPa,6.7MPa·m1/2,两者的性能差异主要来自不同的增韧机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号