首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 836 毫秒
1.
以不同加载速率进行挤压态Mg-2.9Li-1.2Y-6.2Zn合金拉伸试验。结果表明,Mg-2.9Li-1.2Y-6.2Zn合金热挤压后发生了充分的动态再结晶,获得了细小均匀的等轴晶组织;在0.15 mm/min~15 mm/min加载速率范围内,Mg-2.9Li-1.2Y-6.2Zn合金产生了塑性不稳定现象;随着加载速率的提高,该合金的屈服强度和抗拉强度小幅降低,但伸长率和断面收缩率明显增大,微观断裂机制由以解理为主的断裂机制逐渐向微孔聚合型断裂转变。  相似文献   

2.
利用电子拉伸试验机在不同拉伸速率下对具有密排六方结构(HCP)和体心立方结构(BCC)的双相Mg-8%Li合金进行了拉伸试验。结果表明,在0.05 mm/min和0.5 mm/min拉伸速率下,该合金产生了塑性不稳定现象(PLC效应);在0.05 mm/min~50 mm/min拉伸速率范围内,随着拉伸应变率的增加,合金产生了显著的正应变率效应。微观断裂机制主要是微孔聚合型韧性断裂,但随着应变率提高,合金断口表现出一定的脆化倾向。  相似文献   

3.
利用金相显微镜、扫描电子显微镜、X射线衍射仪、电子拉伸试验机等对挤压态Mg-7Li合金及Mg-7Li-3Zn-6Y合金的显微组织和力学行为进行研究。结果表明:Mg-7Li合金及Mg-7Li-3Zn-6Y合金热挤压后均发生了动态再结晶,且Zn、Y的添加使Mg-7Li-3Zn-6Y合金的晶粒显著细化;随着应变率提高,两种合金均表现出应变率强化效应,且添加Zn、Y后合金的强度明显提高、塑性降低,同时,塑性不稳定性得到抑制;两种合金的微观断裂机制均为微孔聚合型断裂与沿晶断裂的混合机制,但添加Zn、Y后合金断口中沿晶断裂的比例明显增大。  相似文献   

4.
通过进行光学显微镜、扫描电镜观察及拉伸性能测试,研究了时效态Al-5.5Cu-0.9Mg-0.2Sc-0.15Zr-1.0Ti合金的显微组织及不同温度下的拉伸性能。结果表明:Ti元素的添加,可以在合金晶粒内部产生Al3Ti相。随着时效时间的增加该合金室温抗拉强度和屈服强度均呈先增加后降低的趋势,并在时效8 h时达到最大值。断后伸长率随时效时间的增加呈现出下降的趋势。对T6态的Al-5.5Cu-0.9Mg-0.2Sc-0.15Zr-1.0Ti合金进行高温拉伸试验,其结果表明,随着试验温度的升高,合金的拉伸强度有所下降,而断后伸长率升高。利用SEM对合金的拉伸断口形貌进行观察,结果表明,在常温拉伸加载条件下,合金的拉伸断裂方式是以脆性为主的韧脆混合断裂;在高温拉伸加载条件下,合金断口处存在大量韧窝,断裂方式为韧性断裂。比较室温拉伸与高温拉伸的拉伸断口形貌可知,合金断裂方式由韧脆混合断裂转变为韧性断裂。  相似文献   

5.
采用四种加载速率(1,0.1,0.01,0.001 mm/s),对四种钎料厚度(0.1,0.2,0.3,0.6 mm)的SnAgCu/Cu搭接焊点进行了剪切破坏试验,分析了不同加载速率以及钎料尺寸对焊点抗剪切性能的影响,并通过扫描电镜(SEM)和能谱仪(EDS)分析了剪切试样断口形貌、裂纹的萌生位置及扩展路径,阐释了SnAgCu/Cu焊点断裂失效机理. 结果表明,加载速率在0.001~1 mm/s范围内,焊点抗剪切强度随加载速率的增加而增大,不同加载速率条件下焊点的断裂模式都为韧性断裂. 不同钎料厚度的SnAgCu/Cu焊点随着焊点厚度的减小,其抗剪切性能提高,表现出明显的体积效应,其裂纹萌生位置逐渐由焊点内部向IMC层转移. 焊点断口形貌为拉伸撕裂型伸长韧窝和剪切平面,断裂机理为微孔聚集型-纯剪切复合断裂.  相似文献   

6.
在电脑伺服控制试验机上对钨合金进行了动态拉伸试验,研究了加载速率、缺口大小对钨合金的拉伸性能的影响。从微观上分析了断裂机制及抗拉强度与断口形貌的关系。结果表明,在0.8335~2.08375 mm/min加载速率范围内,随加载速率和缺口的增大,钨合金的抗拉强度和屈服强度都在逐渐增大,由此得出加载速率和缺口大小对钨合金的强度具有强化效应。  相似文献   

7.
通过室温静态拉伸和扭转试验,结合TEM、SEM等分析检测方法,系统研究了双态Ti-55531合金在拉伸和扭转载荷下的变形和断裂失效行为。结果表明,载荷方式对双态Ti-55531合金变形和断裂行为有显著的影响:首先,该合金扭转剪切强度较拉伸强度低约300MPa,表明该合金的断裂对扭转切应力的敏感性高于拉伸应力。其次,拉伸和扭转变形时,合金主要都受滑移和剪切共同控制,但相对拉伸变形扭转变形时等轴αp产生的剪切滑移带数量更多;且变形时晶界α和等轴αp的界面处易堆积高密度位错。最后,拉伸断口较扭转断口陡峭,拉伸断裂失效是以微孔聚集为主的穿晶断裂机制;而扭转断裂失效则是以微孔聚集和剪切开裂的混合断裂机制。  相似文献   

8.
根据Mg-Li二元合金相图设计了三种Li含量的Mg-Li合金。这三种合金分别具有α单相、α+β共晶和β单相组织。对三种合金分别进行了拉伸、冲击试验和断口分析。结果表明:Mg-3.5Li(α相)合金有最高的抗拉强度和最低的塑性及韧性,拉伸和冲击断口主要呈脆性断裂特征;Mg-8Li(α+β共晶)合金有最好的屈服强度、塑性和韧性,拉伸和冲击断口主要呈韧性断裂特征。  相似文献   

9.
采用双重退火对Ti8LC合金进行热处理,测试其室温及高温拉伸性能,并采用扫描电镜对室温拉伸断口形貌进行观察,分析其断裂机制.结果表明,提高双重退火的第一次退火温度,初生α相含量减少,β转变组织逐渐增多,合金强度略有升高,塑性降低;该合金的室温拉伸强度比普通TC4合金高,塑性相当:拉伸断口特征明显,两种退火制度的试样断口均为微孔聚集型韧窝断裂.提高第一次退火温度,试样宏观断口上纤维区减小,放射区和剪切唇区比例增大,这是塑性下降的表现,与试验测得的性能数据相吻合.  相似文献   

10.
研究了淬火和时效2种状态的U-5.7%Nb合金,从室温(20℃)~800℃温度范围的准静态拉伸性能,及合金的变形和断裂行为。结果表明,不论淬火或时效状态的U-5.7%Nb合金,当温度高于200℃后,合金在室温下表现出的二次屈服现象将完全消失,并在400℃温度附近发生脆化,在700℃温度附近表现出明显的超塑性,其中淬火态合金性能的变化尤为明显。并对准静态拉伸、Hopkinson拉伸及爆炸膨胀环3种加载速率下,时效态U-5.7%Nb合金的组织结构进行了对比分析。结果表明,以不同应变速率断裂的时效态U-5.7%Nb合金,断口中心部位的韧窝比边缘部位相对明显,Hopkinson拉伸断口的晶粒大于准静态拉伸断口的晶粒,爆炸速率断裂的合金断口有剪切断裂、边缘开裂及局部夹杂脱落的现象。  相似文献   

11.
对TA15合金在SANS CMT4104型高温电子拉伸实验机上进行恒应变速率超塑性拉伸试验,研究了合金超塑性变形过程中空洞演化及断裂行为。结果表明:超塑性变形过程中,TA15合金空洞含量和大小受变形量、应变速率和应变速率敏感性指数m值的影响较大。随变形量增大,空洞分别沿拉伸轴方向和垂直于拉伸轴方向发生了聚合和连接,空洞长大由形核时的一般扩散机制向塑性变形机制转变。TA15合金超塑性拉伸试样断口呈针点状,断口上含有大量的韧窝状空洞,空位聚集-空洞连接是TA15合金超塑性断裂的主要机制。  相似文献   

12.
单晶高温合金损伤与断裂特征研究   总被引:1,自引:0,他引:1  
研究了单晶高温合金在持久、拉伸和低周疲劳条件下的损伤与断裂特征。结果表明:单晶合金高温持久微观断裂方式为沿原始微孔洞扩展的微孔聚集型断裂,中温持久微观断裂方式为微孔聚集型断裂与滑移剪切断裂共存的混合型断裂;高温拉伸首先在内部以微孔聚集型模式开裂,最后阶段以滑移剪切的方式发生断裂,微孔聚集型断裂过程占主要地位,中温拉伸以纯滑移剪切的方式发生断裂,断口由一个平面组成;低周疲劳断裂由裂纹萌生、裂纹稳定扩展和裂纹失稳扩展3个阶段组成。断口呈现多源开裂特征,疲劳裂纹一般萌生于表面。疲劳裂纹扩展初期断口基本与主应力方向垂直,随着疲劳裂纹扩展,断口表现为与主应力约成45°的平面特征。  相似文献   

13.
通过室温静态拉伸和扭转试验,结合TEM、SEM等分析检测方法,系统研究了片层Ti-55531合金在拉伸和扭转载荷下的断裂失效行为。结果表明,片层Ti-55531合金在拉伸和扭转载荷下的断裂失效有显著的不同:拉伸变形受滑移、次生α_s的孪生及剪切共同控制,扭转变形主要受滑移和剪切控制,未发现有孪晶;拉伸断口较扭转断口陡峭,失效以微孔聚集为主,含少量穿晶解理和沿晶开裂的混合断裂机制;扭转断裂失效则以微孔聚集和剪切开裂为主,含部分穿晶解理的混合断裂机制。无论在拉伸还是扭转载荷下,片层Ti-55531合金的断裂失效面均由最大剪切应力产生,剪切力比正应力更易使片层Ti-55531合金损伤破坏。  相似文献   

14.
根据热采井的服役温度,对P110H热采套管钢进行了高温拉伸试验,并对不同温度下的断口形貌进行了观察,分析了由于温度影响而引起的断裂机理变化。结果表明:随着温度的升高,P110H钢的屈服强度显著下降,而抗拉强度下降并不明显,屈强比随温度升高而降低。在高温的影响下,其断裂过程由微孔聚合诱发剪切扩展断裂的组合断裂过程转变为微孔聚合为主导的韧性断裂过程,其主要原因是由于高温使位错激活能增加,提高了材料的塑性变形能力。  相似文献   

15.
高应变速率对挤压态AZ61镁合金力学行为的影响   总被引:1,自引:1,他引:0  
采用光学显微镜对挤压态AZ61镁合金的显微组织进行了观察,利用Hopkinson杆杆测试技术对挤压态AZ61镁合金进行了高应变速率冲击拉伸试验,测定了该合金在不同应变速率下的完整动态应力-应变曲线;对该合金在高应变速率下动态应力-应变行为及其应变速率对挤压态AZ61镁合金的屈服行为及其断裂机制的影响进行了分析.结果表明,在整个加载过程中,材料的弹性模量变化很小;在拉伸过程中,该材料表现出明显的屈服点.随着应变速率的增加,材料的抗拉强度相应增大,失稳应变相应减小,但表现出的应变速率强化效应不明显.采用SEM对其断口进行分析,结果表明挤压态AZ61镁合金拉伸断口对应变速率不敏感,表现为以韧性为主伴有少量解理特征的混合断裂.  相似文献   

16.
等通道转角挤压Mg-1Zn-2Nd合金的力学性能   总被引:2,自引:0,他引:2  
试验研究了经过不同道次和路径等通道转角挤压的Mg-1Zn-2Nd合金的硬度及其在不同应变速率和试验温度下的力学性能,观察分析了等通道转角挤压Mg-1Zn-2Nd合金的拉伸断口形貌。结果表明,等通道转角挤压Mg-1Zn-2Nd合金在不同试验温度下的伸长率和屈服强度与挤压道次和路径以及所采用的应变速率密切相关;而且经过不同道次和路径等通道转角挤压的Mg-1Zn-2Nd合金在拉伸加载条件下呈现典型的韧性断裂特征,采用4道次路径C等通道转角挤压的Mg-Zn-Nd合金在300℃时的伸长率最大为381.8%。  相似文献   

17.
利用SEM原位拉伸实验,研究了Ti555211合金具有初始双态组织的拉伸变形和断裂行为。结果表明:在拉伸载荷作用下,双态组织试样中滑移带优先出现在初生α相内(与拉伸轴呈45°),在裂纹扩展过程中,合金内滑移带的密度均随着载荷的增加逐渐增加,双态组织试样的断裂方式为微孔聚集型断裂。原位拉伸试样断口分析表明,韧性断裂是双态组织试样的主要断裂方式,双态组织试样断口没有明显剪切唇,存在小范围的剪切滑移造成的平坦面。SEM原位拉伸实验分析方法能够对该合金的变形和断裂行为进行实时跟踪,该方法的研究结果更加具有重大的理论价值和工程意义。  相似文献   

18.
利用电子拉伸试验机对25Cr2Ni4MoV在25℃至600℃区间开展了拉伸试验,获得了不同温度下合金的力学性能,分析了拉伸温度对其组织与性能的影响,并使用扫描电镜观察了断口形貌。结果表明:随温度升高,合金的屈服强度和抗拉强度不断降低,超过400℃时,下降幅度显著增加,此时裂纹更易在夹杂物位置处起裂。不同拉伸温度下,合金断口均为韧性断裂特征,断口表面分布有韧窝和孔洞,断裂机理为微孔聚集型韧性断裂。  相似文献   

19.
采用光学显微镜对Mg-xGd-2Y-0.5Zr(x=9,11,13,15 mass%)合金铸态、固溶时效态以及拉伸断口附近纵切面组织进行观察分析,并用扫描电镜和电子拉伸试验机分别对合金断口形貌和不同温度下的力学性能进行测试和分析。研究结果表明:铸态Mg-xGd-2Y-0.5Zr合金经525℃固溶6 h和225℃时效10 h后粗大的枝晶消失,晶界清晰可见;当Gd的添加为13 mass%时,合金的晶粒最细小,组织分布最均匀,Mg-13Gd-2Y-0.5Zr合金具有优异的室温和高温力学性能,其在室温和高温下的抗拉强度达到最大值。当Gd的含量一定时,合金的抗拉强度随拉伸温度的升高先升高后降低,在250℃时达到最大值;Mg-13Gd-2Y-0.5Zr合金断裂形式为脆性断裂,并以沿晶断裂为主。  相似文献   

20.
采用单向拉伸试验研究了热轧退火态TC4钛合金型材的高温变形行为,分析了变形温度和应变速率对TC4钛合金力学性能的影响。结果表明,当拉伸速率不变时(0.236~1mm/min),抗拉强度随温度的升高而降低;当变形温度分别在773、993和1 093K下保持恒定时,合金的抗拉强度受拉伸速率的影响较小,抗拉强度基本保持不变;当变形温度为1 093K时,合金的抗拉强度随拉伸速率的增加而增加;随着变形温度提高或者拉伸速率降低,断口中韧窝数量越来越多,且韧窝的形状逐渐趋于规则,试样的断裂方式由脆性断裂和韧性断裂的混合型断裂转变为韧窝聚合型延性断裂,最后转变为韧性断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号