首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《金属精饰学会汇刊》2013,91(3):155-158
Abstract

Zn, Zn–Ni, Zn–Fe and Zn–Fe–Ni films have been deposited by electrochemical deposition technique onto steel plate substrates. The objective of this study was to characterise the corrosion properties of these alloys in saline solution for the application as new environmentally friendly sacrificial coatings in the protection of steel structures. The morphological and structural properties of the alloys were systematically studied using XRD and SEM techniques. Cyclic voltammetry of the individual metals was performed to help understand the electroplating process of the films. Grain sizes of the films were calculated using Scherrer's formula. Partial substitution of Zn to Fe and Ni leads to an improvement in the corrosion resistance. Compared with other zinc alloys, the Zn–Ni alloy deposit was the noblest.  相似文献   

2.
In this paper, the influence of T6, T74 and RRA aging treatments on microstructure, strength and corrosion behaviour of high Zn content Al–Zn–Mg–Cu alloy was investigated by tensile properties tests, inter-granular corrosion (IGC) tests, exfoliation corrosion (EXCO) tests, polarisation tests, metallographic microscope and transmission electron microscopy (TEM) analysis. The results show that the T74 and RRA temper can increase the size and the distribution discontinuity of the grain boundaries precipitates (GBPs), thus leading to improvement of the corrosion resistance. However, with the coarser matrix precipitates (MPs) relative to T6 treatment, RRA and T74 temper both have a decrease in strength. Besides, all the performances (including mechanical properties and corrosion properties) of the RRA treatment show an intermediate level relative to T6 and T74. Therefore, we can select the appropriate heat treatment process according to the different performance requirements in the industrial production.  相似文献   

3.
In the present study, the effect of Zn content on the microstructure and deformation behavior of the as-cast Mg–Zn–Y–Nd alloy has been investigated. The results showed that as Zn content increased, the volume fraction of secondary phases increased. Moreover, the phase transformation from W-phase to W-phase and I-phase occurred. In the as-cast state,W-phase exists as eutectic and large block form. When Zn content increases to 6 and 8%(wt%), small I-phase could precipitate around W-phase particles. Additionally, the effect of Zn content on the tensile properties and deformation behavior varies with the testing temperature. At room temperature, the tensile strength increases with Zn content, whereas the elongation increases initially and then decreases. At 250 °C, as Zn content increases, the tensile strength decreases initially and then increases slightly, whereas the elongation decreases. At 350 °C, the elongation increases with Zn content,whereas the tensile strength decreases initially and then increases slightly.  相似文献   

4.
A new kind of Mg–2 Zn–0.6 Ca(wt%) alloy was fabricated by casting and hot extrusion as a high-ductility structural material. The extruded alloy exhibits a superior elongation of ~30%, yield strength of 130 MPa and ultimate tensile strength of 280 MPa along the extrusion direction at room temperature. Microstructure, texture and tensile properties of the extruded alloy were investigated in details. The remarkable improvement of ductility is ascribed to the weakened basal texture, refined grains and a small number of second phase in the alloy.  相似文献   

5.
The mechanical properties, corrosion behavior and microstructures of the Al–Zn–Mg–Cu alloy under various ageing treatments were investigated comparatively. The results show that the tensile strength and corrosion resistance are strongly affected by the precipitate state. Massive fine intragranular precipitates contribute to high strength. Discontinuous coarse grain boundary precipitates containing high Cu content, as well as the narrow precipitate free zone, result in low corrosion susceptibility. After the non-isothermal ageing (NIA) treatment, the tensile strength of 577 MPa is equivalent to that of 579 MPa for the T6 temper. Meanwhile, the stress corrosion susceptibility rtf and the maximum corrosion depth are 97.8% and 23.5 μm, which are comparable to those of 92.8% and 26.7 μm for the T73 temper. Moreover, the total ageing time of the NIA treatment is only 7.25 h, which is much less than that of 48.67 h for the retrogression and re-ageing condition.  相似文献   

6.
The microstructure, texture, residual stress, and tensile properties of Mg–6 Zn–2 Y–1 La–0.5 Zr(wt%) magnesium alloy were investigated before and after extrusion process, which performed at 300 °C and 400 °C. The microstructural characterizations indicated that the as-cast alloy was comprised of α-Mg, Mg–Zn, Mg–Zn–La, and Mg–Zn–Y phases. During homogenization at 400 °C for 24 h, most of the secondary phases exhibited partial dissolution. Extrusion process led to a remarkable grain refi nement due to dynamic recrystallization(DRX). The degree of DRX and the DRXed grain size increased with increasing extrusion temperature. The homogenized alloy did not show a preferential crystallographic orientation, whereas the extruded alloys showed strong basal texture. The extrusion process led to a signifi cant improvement on the compressive residual stress and mechanical properties. The alloy extruded at 300 °C exhibited the highest basal texture intensity, the compressive residual stress and hardness, and yield and tensile strengths among the studied alloys.  相似文献   

7.
A new Mg-2.2 wt% Zn alloy containing 1.8 wt% Ca and 0.5 wt% Mn has been developed and subjected to extrusion under different extrusion parameters.The finest(~0.48 μm) recrystallized grain structures,containing both nano-sized MgZn_2 precipitates and α-Mn nanoparticles,were obtained in the alloy extruded at 270℃/0.01 mm s~(-1).In this alloy,the deformed coarse-grain region possessed a much stronger texture intensity(~32.49 mud) relative to the recrystallized fine-grain region(~13.99 mud).A positive work hardening rate in the third stage of work hardening curve was also evident in the alloy extruded at 270℃,which was related to the sharp basal texture and which provided insufficient active slip systems.The high work hardening rate in the fourth stage contributed to the high ductility extruded at 270℃/1 mm s~(-1).This alloy exhibited a weak texture,and the examination of fracture surface revealed highly dimpled surfaces.The optimum tensile strength was achieved in the alloy extruded at 270℃/0.01 mm s~(-1),and the yield strength,ultimate tensile strength and elongation to failure were~364.1 MPa,~394.5 MPa and~7.2%,respectively.Fine grain strengthening from the recrystallized fine-grain region played the greatest role in the strength increment of this alloy compared with Orowan strengthening and dislocation strengthening in the deformed coarse-grain regions.  相似文献   

8.
《Acta Materialia》2003,51(17):5151-5158
Secondary ageing of age-hardenable aluminium alloys occurs at temperatures below the solvus of GP zones after a preliminary ageing at a higher temperature. The phenomenon has technological interest, as it may be included in heat treatments giving a substantial benefit on the mechanical properties. In the present work, positron annihilation lifetime spectroscopy (PALS) is applied in combination with Vickers hardness measurements for an investigation on secondary ageing of Al–4wt.%Zn–3wt.%Mg–xAg, where x=0, 0.1, 0.2, 0.3, 0.5 wt.%. Ageing regimes have been characterised by the substantially different evolutions that are observed. The results shed light on the interplay between the formation of coherent solute aggregates (clusters or GP zones) and the precipitation of semi-coherent or incoherent precipitates, which are in competition to control the hardening effects. PALS data show that secondary ageing in the ternary Al–Zn–Mg alloys produces coherent aggregates even in the presence of a well-developed stage of semi-coherent or incoherent precipitation that is obtained if the alloys are first aged to peak hardness. In the presence of Ag, on the contrary, the effects of coherent aggregation during secondary ageing are observed only if the preliminary ageing is interrupted well before reaching peak hardness.  相似文献   

9.
《Scripta materialia》2003,48(9):1319-1323
The stress–strain behaviors of a Mg–2.8%Ce–0.7%Zn–0.7%Zr (wt.%) alloy with various strain rates at different deformation temperatures were investigated. It is found that the alloy can be extruded at 623 K with σ0.2=222.4 MPa, σb=257.8 MPa and δ=12.0%. The working hardening, the dynamic recovery and the dynamic recrystallization play important roles to affect the plastic deformation behaviors of the alloy at different temperature regions, respectively.  相似文献   

10.
The Mg–12Gd–1Er–1Zn–0.9 Zr(wt%) alloy with ultra-high strength and ductility was developed via hot extrusion combined with pre-deformation and two-stage aging treatment.The age-hardening behavior and microstructure evolution were investigated.Pre-deformation introduced a large number of dislocations,resulting in strain hardening and higher precipitation strengthening in the subsequent two-stage aging.As a result,the alloy showed a superior strength–ductility balance with a yield strength of 506 MPa,an ultimate tensile strength of 549 MPa and an elongation of 8.2% at room temperature.The finer and denser β' precipitates significantly enhanced the strength,and the bimodal structure,small β-Mg_5RE phase as well as dense γ' precipitates ensured the good ductility of the alloy.It is suggested that the combination of pre-deformation and two-stage aging treatment is an eff ective method to further improve the mechanical properties of wrought Mg alloys.  相似文献   

11.
《Scripta materialia》2002,46(10):699-703
The element Cu in the bulk glass-forming alloy Mg65Cu25Y10 was substituted with the element Zn to form a Mg65Cu20Zn5Y10 alloy, which caused a significant improvement of the glass-forming ability of Mg65Cu25Y10 alloy. For the Mg65Cu20Zn5Y10 alloy, fully glassy rod with a 6-mm diameter can be obtained by copper mold casting.  相似文献   

12.
《Acta Materialia》2001,49(3):529-541
Al–Zn–Si coatings (55% Al–43.4% Zn–1.6% Si in weight pct) deposited on steel substrates by the hot-dipping process have been analyzed by Electron Back-Scattered Diffraction (EBSD) and optical microscopy. In these 20 μm-tick films, the main growth directions of the dendrites have been unambiguously identified as being the closest to <320> directions. When the surface precisely corresponds to a (001) plane of the grain, the four usual <100> growth directions of fcc metals are replaced by eight <320> directions growing parallel to the coating (eight-fold symmetry dendritic pattern). When the surface nearly corresponds to (101) or (111) planes, six growth directions close to <320> projections result in a six-fold symmetry dendritic pattern. This morphology change is attributed to an intrinsic modification of the interfacial energy anisotropy. On the other hand, crystallographic orientation within a single grain is shown to vary substantially: in very large grains, misorientations as large as 35 deg. have been evidenced. Being spatially correlated to the location in the coating and to the dendritic pattern, these misorientations are explained in terms of systematic lattice spacing variations associated with the specific microsegregation pattern. However, thermal stresses induced upon cooling as a result of differential thermal contraction between the coating and substrate, can also contribute to these misorientations. Finally, it is shown that there is no relationship between the strongly marked texture of the cold-rolled substrate and the random orientation of the grains of the Al–Zn–Si coating.  相似文献   

13.
Mg–Zn–Ag alloys have been extensively studied in recent years for potential biodegradable implants due to their unique mechanical properties,biodegradability and biocompatibility.In the present study,Mg–3Zn-x Ag(wt%,x=0.2,0.5 and0.8)alloys with single-phase crystal structure were prepared by backward extrusion at 340°C.The addition of Ag element into Mg–3Zn slightly influences the ultimate tensile strength and microstructure,but the elongation firstly increases from12%to 19.8%and then decreases from 19.8%to 9.9%with the increment of Ag concentration.The tensile yield strength,ultimate tensile strength and elongation of Mg–3Zn–0.2Ag alloy reach up to 142,234 MPa and 19.8%,respectively,which are the best mechanical performance of Mg–Zn–Ag alloys in the present work.The extruded Mg–3Zn–0.2Ag alloy also possesses the best corrosion behavior with the corresponding corrosion rate of 3.2 mm/year in immersion test,which could be explained by the single-phase and uniformly distributed grain structure,and the fewer twinning.  相似文献   

14.
Phases and microstructures of three high Zncontaining Al–Zn–Mg–Cu alloys were investigated by means of thermodynamic calculation method, optica microscopy(OM), scanning electron microscopy(SEM)energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), and differential scanning calorimetry(DSC) analysis. The results indicate that similar dendritic network morphologies are found in these three Al–Zn–Mg–Cu alloys. The as-cast 7056 aluminum alloy consists of aluminum solid solution, coarse Al/Mg(Cu, Zn, Al)_2 eutectic phases, and fine intermetallic compounds g(MgZn_2). Both of as-cast 7095 and 7136 aluminum alloys involve a(Al)eutectic Al/Mg(Cu, Zn, Al)_2, intermetallic g(MgZn_2), and h(Al_2Cu). During homogenization at 450 °C, fine g(MgZn_2) can dissolve into matrix absolutely. After homogenization at 450 °C for 24 h, Mg(Cu, Zn, Al)_2 phase in 7136 alloy transforms into S(Al_2Cu Mg) while no change is found in 7056 and 7095 alloys. The thermodynamic calculation can be used to predict the phases in high Zncontaining Al–Zn–Mg–Cu alloys.  相似文献   

15.
《Acta Materialia》2008,56(5):985-994
The fatigue behavior of as-cast Mg–12%Zn–1.2%Y–0.4%Zr alloy has been investigated. The SN curve showed that the fatigue strength at 107 cycles was 45 MPa. Scanning electron microscopy observations on the surfaces of the failed and unfailed specimens (after up to 1 × 107 cycles) suggested that the slip bands could act as preferential sites for non-propagating fatigue crack initiation, and the I-phase could effectively retard fatigue crack propagation (FCP). The macro fracture morphology clearly indicated that the overall fracture surface was composed of three regions, i.e. a fatigue crack initiation region (Region 1), a steady crack propagation region (Region 2) and a tearing region (Region 3). High-magnification fractographs showed that only porosities can act as the crack initiation sites for all specimens. Moreover, for specimens with fatigue lifetimes lower than 2 × 105 cycles, the cracks mostly initiated at the subsurface or surface of the specimen. However, when the fatigue lifetime was equal to or higher than 2 × 105 cycles, the fatigue crack initiation sites transferred to the interior of the specimen. The maximum stress intensity factors corresponding to the transition sites between Regions 1, 2 and 3 were 2 and 4.2 MPa m1/2, respectively. When the maximum stress intensity factor Kmax was lower than 4.2 MPa m1/2, in the steady crack propagation region, due to the retarding effect of I-phase/α-Mg matrix interfaces, the fatigue cracks tended to pass the I-phase/α-Mg matrix eutectic pockets directly and propagated through the grain cells, resulting in the formation of many flat facets on the fracture surface. However, when the maximum stress intensity factor was higher than 4.2 MPa m1/2, in the sudden failure region, the rigid bonding of I-phase/α-Mg matrix interfaces was destroyed and the cracks preferentially propagated along the interfaces, which resulted in the fracture surface being almost completely composed of cracked I-phase/α-Mg matrix eutectic pockets. Based on microstructural observation and the fracture characteristics of the two regions, it is suggested that with an increase in crack tip driving force, the FCP mode changes from transgranular propagation to intergranular propagation.  相似文献   

16.
Solution treatment is a useful way to improve the degradation resistance of Mg alloys.In this work,effects of solution treatment temperature on mechanical and biodegradable properties of an extruded Mg–2Zn–1Gd–0.5Zr alloy were studied.Microstructure analysis,tensile test, three-point bending test, immersion test and electrochemical test were performed.The results showed that increasing solution temperature decreases the mechanical properties of the alloy.However, three-point bending test revealed that the solution-treated alloy at 510 ℃ could maintain 95% of its maximum bending force(F_(max)) during the 28-day immersion period.After treatment at 510 ℃ for 5 h, all the second phases were dissolved into the alloy, the galvanic corrosion was inhibited, and the alloy exhibited good corrosion resistance with a corrosion rate of 0.35 mm·year~(-1) in Hank's solution.  相似文献   

17.
The results of a study of the phase composition and microstructure of foils of Sn–8.0 Zn–3.0 Bi–X In (X = 1.5, 2.5, 4.5, 9.0) (wt %) alloys formed by rapidly quenching from the melt at a cooling rate of up to 5 × 105 K/s have been presented. The dependence of the phase composition of the rapidly quenched foils on the concentration of In has been determined. It has been shown that, in rapidly quenched foils, crystallization occurs with the formation of supersaturated solid solutions based on β-Sn and γ phase (Sn4In). The mechanisms and rates of decomposition of the supersaturated solid solutions at room temperature have been established. The specific features of the formation of the microstructure of the foils have been discussed. The grain structure has been studied by the electron back-scatter diffraction (EBSD) method; the formation of an elongated shape of grains and the high specific surface area of small-angle boundaries has been explained.  相似文献   

18.
Effects of equal channel angular pressing(ECAP) extrusion on the microstructure, mechanical properties and biodegradability of Mg–2Zn– xGd–0.5Zr( x=0,0.5,1,2 wt%) alloys were studied in this work. Microstructure analysis, tensile test at ambient temperature, immersion test and electrochemical test in Hank's solution were carried out. The results showed that Gd could further enhance the grain refinement during the ECAP extrusion. Both Gd addition and ECAP extrusion could improve the mechanical properties of the alloys, and the extrusion played the dominant role. Minor addition of Gd(0.5–1 wt%) could obviously enhance the corrosion resistance of the alloys. To some extent, ECAP extrusion improved the corrosion resistance of the alloys due to the change of second phases distribution and the refinement of grains. Further increase in extrusion pass was detrimental to the improvement of the corrosion resistance as a result of increment of the grain boundaries.  相似文献   

19.
This study investigates the eff ect of solution treatment(at 470 °C for 0–48 h) on the microstructural evolution,tensile properties,and impact properties of an Al–5.0Mg–3.0Zn–1.0Cu(wt%) alloy prepared by permanent gravity casting.The results show that the as-cast microstructure consists of α-Al dendrites and a network-like pattern of T-Mg_(32)(AlZnCu) 49 phases.Most of the T-phases were dissolved within 24 h at 470 ℃;and a further prolonging of solution time resulted in a rapid growth of α-Al grains.No transformation from the T-phase to the S-Al_2CuMg phase was discovered in this alloy.Both the tensile properties and impact toughness increased quickly,reached a maximum peak value,and decreased gradually as the solution treatment proceeded.The impact toughness is more closely related to the elongation,and the relationship between impact toughness and elongation appears to obey an equation:IT = 8.43 EL-3.46.After optimal solution treatment at 470 ℃ for 24 h,this alloy exhibits excellent mechanical properties with the ultimate tensile strength,yield strength,elongation and impact toughness being 431.6 MPa,270.1 MPa,19.4% and 154.7 kJ/m~2,which are comparable to that of a wrought Al–6.0 Mg–0.7 Mn alloy(5E06,a 5 xxx aluminum alloy).Due to its excellent comprehensive combination of mechanical properties,this cast alloy has high potential for use in components which require medium strength,high ductility and high toughness.  相似文献   

20.
Abstract

In this study, the microstructure and mechanical properties of as cast Mg–x Sn–5Al–1Zn alloys were investigated. The microstructures of the alloys were characterised by the presence of Mg2Sn and Mg17Al12 precipitates. The greatest tensile strength and elongation were obtained at the alloy containing 5 wt-%Sn at room temperature. Microhardness of the alloys and volume fraction of the Mg2Sn precipitates increased with increasing Sn content. Fractographic analysis demonstrated that dimple and cleavage facet were dominant mechanisms of these alloys tested at room and elevated temperature. The portion of cleavage facet was increased with the increment of Sn at the room and elevated temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号