首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
Solution and aging treatments are important approaches to improve mechanical properties and microstructure of aluminum-base alloys. In this research, a new type high strength AI-Cu-Si-Mn cast alloy was prepared. The effect of different solution and aging treatment temperatures on microstructure and mechanical properties of the AI-Cu-Si-Mn cast alloy were studied by means of microstructure observation and mechanical properties testing. Results showed that after solution treated at different temperatures for 12 h and aged at 175 ℃ for 12 h, with the increase of the solution temperature, both the tensile strength and the elongation of the alloy firstly increase and then decrease, and reach their peak values at 530 ℃. When the solution temperature is below 530 ℃, the microstructure of the alloy consists of a phase, undissolved e phase and T phase; while when it exceeds 530 ℃, the microstructure only consists of cr phase and T phase. After solution treated at 530 ℃ for 12 h and aged at different temperatures for 12 h, both the tensile strength and the elongation of the alloy firstly increase and then decrease with the increasing of temperature, and reach their peak values at 175 ℃. Therefore, the optimal heat treatment process for the alloy in this study is 12 h solution at 530 ℃ and 12 h aging at 175 ℃, and the corresponding tensile strength is 417 MPa, elongation is 4.0%.  相似文献   

2.
Solution treatment is a useful way to improve the degradation resistance of Mg alloys.In this work,effects of solution treatment temperature on mechanical and biodegradable properties of an extruded Mg–2Zn–1Gd–0.5Zr alloy were studied.Microstructure analysis,tensile test, three-point bending test, immersion test and electrochemical test were performed.The results showed that increasing solution temperature decreases the mechanical properties of the alloy.However, three-point bending test revealed that the solution-treated alloy at 510 ℃ could maintain 95% of its maximum bending force(F_(max)) during the 28-day immersion period.After treatment at 510 ℃ for 5 h, all the second phases were dissolved into the alloy, the galvanic corrosion was inhibited, and the alloy exhibited good corrosion resistance with a corrosion rate of 0.35 mm·year~(-1) in Hank's solution.  相似文献   

3.
The effects of thermomechanical treatment on the properties and microstructure of Cu-Cr-Zr alloy and Cu-Cr-Zr-Ag alloy were investigated. Ag addition improves the mechanical properties of the alloy through solid solution strengthening and brings a little effect on the electrical conductivity of the alloy. A new Cu-Cr-Zr-Ag alloy was developed, which has an excellent combination of the tensile strength, elongation, and electrical conductivity reaching 476.09 MPa, 15.43% and 88.68% IACS respectively when subjected to the optimum thermomechanical treatment, i.e., solution-treating at 920°C for 1 h, cold drawing to 96% deformation, followed by aging at 400°C for 3 h. TEM analysis re-vealed two kinds of finely dispersed precipitates of Cr and Cu4Zr. It is very important to use the mechanisms of solid solution strengthening, work hardening effect as well as precipitate pinning effect of dislocations to improve tensile strength of the alloy without adversely affecting its electrical conductivity.  相似文献   

4.
Based on the 3 factors and 3 levels orthogonal experiment method, compositional effects of Mg, Si, and Ti addition on the microstructures, tensile properties, and fracture behaviors of the high-pressure die-casting Al-x Mg-y Si-z Ti alloys have been investigated. The analysis of variance shows that both Mg and Si apparently infl uence the tensile properties of the alloys, while Ti does not. The tensile mechanical properties are comprehensively infl uenced by the amount of eutectic phase(α-Al + Mg_2Si), the average grain size, and the content of Mg dissolved into α-Al matrix. The optimized alloy is Al-7.49 Mg-3.08 Si-0.01 Ti(wt%), which exhibits tensile yield strength of 219 MPa, ultimate tensile strength of 401 MPa, and elongation of 10.5%. Furthermore, contour maps, showing the relationship among compositions, microstructure characteristics, and the tensile properties are constructed, which provide guidelines for developing high strength and toughness Al–Mg–Si–Ti alloys for high-pressure die-casting.  相似文献   

5.
The microstructural features and high temperature tensile properties of M963 superaUoy at as-cast, as-solutioned and as-aged conditions were investigated in detail. The results show that the solution treatment at 1220℃ for 4 h,AC causes an increase in high temperature yield strength but a drastic drop in high temperature ductility due to the precipitation of both the secondary carbide M6C along grain boundaries and at the interdendritic regions and very fine γ‘ particles in the dendrite cores. Aging treatment following the solution treatment can improve the high temperature tensile properties of M963 superalloy due to the coaraing of the γ’ precipitate. One stage aging at 850℃ for 16 h following the solution treatment causes an increase in both strength and ductility d alloy M963, and two-stage aging of 1089 ℃/2 h, AC plus 850℃/16 h, AC following the solution treatment further increases the ductility d alloy M963 but slightly decreases its strength.  相似文献   

6.
The influence of long-term solution treatment for various intervals on the microstructure,mechanical properties,and corrosion resistance of the as-cast Mg–5Zn–1.5Y alloy was investigated.Variation of secondary phases was studied during solution treatment through thermal analysis test and thermodynamic calculations.Tensile and hardness tests,as well as polarization and immersion tests,were performed to evaluate the mechanical properties and corrosion behavior of the ascast and heat-treated alloy,respectively.Results show that solution treatment transforms I-phaseinto W-phaseas well as dissolves it into the a-Mg matrix to some extent;therefore,the amount of W-phase increases.Moreover,prolonged solution treatment decreases the volume fraction of the phases.In the first stage of solution treatment for 14 h,the tensile properties significantly increase due to the incomplete phase transformation.Although long-term solution treatment sharply decreases the tensile and hardness properties of the alloy,it improves the corrosion resistance due to the transformation of I-phase into W-phase.In fact,it decreases corrosion potential and simultaneously dissolves intermetallic compounds into the a-Mg matrix,resulting in the reduction in galvanic microcells between the matrix and compounds.It is found that the optimum time for long-term solution treatment is 14 h,which improves both corrosion behavior and mechanical properties.  相似文献   

7.
Xu  Jun-jie  Pan  Ye  Lu  Tao  Bo  Bing 《中国铸造》2018,15(2):117-123
The purpose of this study was to prepare high-quality Al-Si-Mg-Mn alloy with a good combination of strength and ductility employing the vacuum-assisted high-pressure die cast process. An orthogonal study of heat treatments was conducted to design an optimized T6 heat treatment process for both Al-10%Si-0.3%Mg-Mn and Al-11%Si-0.6%Mg-Mn alloys. The results demonstrate that no obvious blisters and warpage were observed in these two alloys with solid solution treatment. After the optimal T6 heat treatment of 530°C×3 h + 165°C×6 h, Al-11%Si-0.6%Mg-Mn alloy has better mechanical properties, of which tensile strength, yield strength and elongation reached 377.3 MPa, 307.8 MPa and 9%, respectively. The improvement of mechanical properties can be attributed to the high density of needle-like β″(Mg_5Si_6) precipitation after aging treatment and the fine and spherical eutectic Si particles uniformly distributed in the α-Al matrix.  相似文献   

8.
The influence of interstitial content on mechanical cryogenic temperature was studied. The results show that properties of a new type of near a titanium alloy (Ti-Zr-Mo-Nb-Sn) at interstitial content affects the mechanical properties of the alloy at cryogenic temperature. Interstitial element atoms solving into lattice causes the increasing of degree of distortion, which limits the sliding and twinning of dislocations. Reducing interstitial content is beneficial to generation of dislocation sliding and deformation twins. With interstitial element content reducing, the impact toughness and the elongation of the alloy decrease rapidly while the strength decreases weakly. To obtain good over-all properties at cryogenic temperature, the interstitial element content in this alloy must be controlled to extra low grade.  相似文献   

9.
Buraś  J.  Szucki  M.  Piwowarski  G.  Krajewski  W. K.  Krajewski  P. K. 《中国铸造》2017,14(3):211-215
This paper includes studies on the influence of grain refinement treatment with respect to the composition and structure of high zinc aluminium casting alloys on the changes of their tensile properties. The Al-20 wt.%Zn alloy was inoculated with master alloys Al Ti5B1 and Al Ti3C0.15 to determine the impact of a variable titanium addition on the tensile properties of Al Zn20 alloy, and determine on this basis an optimal addition of Ti that would ensure the improvement of elongation of alloys cast in the sand mould, at the same time maintaining high tensile strength. Within the studies, light microscopy(LM) and strength tests were applied. Experimental results showed that the inoculation of high zinc aluminium alloy Al Zn20 with the master alloys Al Ti5B1 and Al Ti3C0.15 causes intensive structure refinement, while the intensity of reaction of both master alloys is comparable. The Al Ti3C0.15 master alloy addition, selected for further studies, introducing about 100 ppm Ti, enhances the tensile properties of the alloy; the elongation increases about 20% and tensile strength increases about 10% against the initial values(uninoculated alloy). Further increase of the Ti addition up to 500–600 ppm leads to the "overinoculation" effect that is accompanied by the decrease of elongation. Therefore,the Ti addition should be reduced to the level of about 100 ppm which ensures obtaining a set of optimal properties.  相似文献   

10.
The purpose of this study is to prepare a high-quality Al-11Si-1.5Cu-0.3Mg casting alloy with a good combination of strength and ductility. The microstructures of as-cast alloy were tailored by employing combined additives of Al-3wt.%B refi ner, Al-10 wt.%Sr modifi er and trace addition of La element. By using OM and SEM, the characteristics of the morphologies of eutectic Si particles and the fracture surfaces of the alloys after solution treatment and aging treatment were measured. The mechanical properties of the alloys after single-step or twostep solution treatment were investigated by tensile testing, and the quality of casting samples were evaluated by quality index, Q. The results indicate that the alloy with substantially modifi ed microstructures displays an improvement in mechanical properties of 270 MPa in ultimate tensile strength and 6% in elongation. After an optimized two-step solution treatment of 490℃/4h + 505℃/4h, the ultimate tensile strength and elongation can reach 346 MPa and 10%, respectively. Under the aging condition, the elongation maintains a relative high value of 5% together with the strength of about 400 MPa, which is the outstanding combination of strength and ductility.  相似文献   

11.
采用力学性能测试、金相观察(OM)、X射线衍射(XRD)、透射电子显微分析(TEM)研究了固溶-时效工艺对Al-6. 6Zn-1. 8Mg-0. 24Cu-0. 23Mn-0. 21Zr(wt%,7046A)合金挤压板带显微组织与力学性能的影响。结果表明:合金适宜的固溶-时效工艺为470℃×1 h固溶随后120℃×24 h人工时效。在此条件下,合金的抗拉强度、屈服强度和伸长率分别为570 MPa、532 MPa和10. 9%。T6态合金的物相组成为Al基固溶体、含Mn和Zr的初晶相以及3~5 nm的η’(MgZn2)析出相,与此同时,晶界上析出η(MgZn2)平衡相。合金的强化机制为固溶强化、亚结构强化和时效强化。   相似文献   

12.
采用光学显微镜、扫描电镜、X射线能谱仪、X射线衍射仪、硬度测试及拉伸性能测试等手段分别研究了铸态Mg-4.8Al-2.7Ca-0.4Mn合金固溶处理前后的组织演变及力学性能。结果表明,铸态Mg-4.8Al-2.7Ca-0.4Mn合金的微观组织中,α-Mg相呈现典型的枝晶形态,枝晶间分布着大量在凝固过程中形成的Al2Ca相;固溶处理对第二相的形貌有显著影响,随着固溶时间的增加,枝晶偏析减弱,Al2Ca相从网状分布演变为多边形或细块状;经500 ℃固溶4 h,合金具有较好的综合拉伸性能,抗拉强度、屈服强度及伸长率分别达到222.0 MPa、182.5 MPa和4.5%。  相似文献   

13.
采用重熔稀释法制备了Al-7Si-0.5Mg-0.1Er和0.5TiB2/Al-7Si-0.5Mg-0.1Er合金,研究了TiB2颗粒增强Al-Si-Mg-Er复合材料的组织性能。结果表明,复合材料铸态组织主要由α-Al基体、共晶Si相和TiB2颗粒组成。TiB2粒子的加入使Al-7Si-0.5Mg-0.1Er合金二次枝晶间距减小了7.1 μm。抗拉强度达到217.53 MPa,较Al-7Si-0.5Mg-0.1Er合金提升了12.1 %。TiB2/Al-Si-Mg-Er复合材料的最优T6热处理工艺为530 ℃×12 h固溶+160 ℃×7 h时效,经该工艺处理后,TiB2/Al-Si-Mg-Er复合材料抗拉强度达到319.49 MPa,相比热处理前提高了46.9%,相比Al-7Si-0.5Mg-0.1Er合金提高了5.9%;屈服强度达到266.75 MPa,相比热处理前提高了106.4%,相比Al-7Si-0.5Mg-0.1Er合金提高了14.9%。复合材料抗拉强度的提升主要源于TiB2颗粒加入后产生的晶粒细化、变质和热处理强化。  相似文献   

14.
采用硬度计、数字涡流金属电导仪、透射电镜(TEM)、万能拉伸试验机、扫描电镜(SEM)等对Al-6.8Zn-2.3Mg-2.0Cu-0.15Sc合金在高温回归再时效(RRA)过程中的性能与组织演变规律进行研究。结果表明:合金在170 ℃回归时,具有较高硬度与优良的抗电化学腐蚀性能,合金170 ℃回归1 h时主相η′细小弥散数量众多,在形变过程中借助位错切过与Orowan机制强化合金,强度可达625.1 MPa,伸长率达9.6%,获得了优于单级时效(T6)G.P.区强化达到的强度592.4 MPa、伸长率6.5%,强度提高32.7 MPa,伸长率提高47.7%,拉伸断口形貌SEM显示为完全的韧性断裂特征。Al-6.8Zn-2.3Mg-2.0Cu-0.15Sc合金的优秀RRA工艺为140 ℃×24 h+170 ℃×1 h+160 ℃×24 h。  相似文献   

15.
采用拉伸性能和导电率测试、光学显微镜(OM)、扫描电镜(SEM)、差热分析(DSC)、透射电镜(TEM)研究了固溶温度和时间对Al-8.8Zn-2.0Mg-2.1Cu-0.1Zr-0.1Ce合金板材微观组织、拉伸性能及断口形貌的影响。结果表明,试验合金适宜的固溶工艺为470 ℃×60 min,使冷轧态金属间化合物充分固溶。在此工艺下合金时效后的抗拉强度、屈服强度(以Rp0.2计)以及伸长率分别为646 MPa、581 MPa和14.5%。TEM观察发现合金板材固溶时效后晶内强化相η′仅为2~5 nm,并且晶界析出相η呈现断续分布。此外,合金拉伸断面韧窝中大量弥散分布的AlCuCeZn粒子有利于合金塑性的明显提升。  相似文献   

16.
设计了新型Mg-6Gd-3Y-2Zn-0.5Zr镁合金,并用光学显微镜、扫描电镜及拉伸试验机对合金铸态、均匀化态及挤压态的显微组织特征和力学性能进行了研究。结果表明,铸态Mg-6Gd-3Y-2Zn-0.5Zr合金组织主要由α-Mg基体和沿晶界分布的块状长周期堆垛有序结构相组成,均匀化处理(450℃×16h)促使细小层片状的长周期堆垛有序结构相由晶界向晶内生长。挤压态Mg-6Gd-3Y-2Zn-0.5Zr合金在200℃下时效处理,无明显时效硬化现象,但挤压态合金具有优良的强韧性能,室温抗拉强度、屈服强度和伸长率分别为335MPa、276MPa和17%。  相似文献   

17.
研究了Mg含量、冷却速度、固溶处理对Al-6.8Mg-0.3Mn、Al-3.8Mg-0.3Mn两种合金力学性能的影响。结果表明,随着Mg含量提高,晶界相增多。当Mg含量提高到6.8%时,晶界出现网状组织;随着Mg含量升高,合金强度提高,塑性下降;通过砂型铸造空冷、金属型铸造空冷、金属型铸造淬火来实现不同的冷却速度,发现金属型淬火试样的金相组织中,在晶界附近没有析出网絮状或颗粒状第二相,而强度和伸长率要高于其他两种工艺。两种合金经过430℃×60h固溶处理后,合金的综合力学性能得到大幅度提高。Al-6.8Mg-0.3Mn金属型铸造空冷试样固溶后抗拉强度由280MPa提高到335MPa,伸长率由10.4%提高到20%。  相似文献   

18.
采用金相分析、SEM、硬度试验和拉伸试验等方法分析和测试砂型铸造 Mg-10Gd-3Y-0.5Zr 镁合金在T6态(固溶后空冷然后时效)下的显微组织和室温力学性能,讨论该合金的断裂机理。结果表明,砂铸Mg-10Gd-3Y-0.5Zr合金在225℃和250℃时效下的最优T6热处理工艺分别为(525℃,12 h+225℃,14 h)和(525℃,12 h+250℃,12 h)。峰时效下T6态Mg-10Gd-3Y-0.5Zr合金主要由α-Mg+γ+β′相组成,2种峰时效热处理工艺下合金的抗拉强度、屈服强度和伸长率分别为339.9 MPa、251.6 MPa、1.5%及359.6 MPa、247.3 MPa、2.7%。在不同热处理工艺下Mg-10Gd-3Y-0.5Zr合金断裂的类型不同,峰时效态合金的断裂方式为穿晶准解理断裂。  相似文献   

19.
将Al-6.15Zn-1.41Mg-1.45Cu合金在477℃固溶1 h后,基于脉冲磁场对Al-6.15Zn-1.41Mg-1.45Cu合金进行双级时效处理,通过改变时效时间,且与常规双级时效组织和性能对比分析,研究脉冲磁场对Al-6.15Zn-1.41Mg-1.45Cu合金时效过程中析出相和力学性能的影响,并结合动力学分析Al-6.15Zn-1.41Mg-1.45Cu合金在脉冲磁场双级时效过程中析出相加速析出的扩散机制。采用SEM观察Al-6.15Zn-1.41Mg-1.45Cu合金析出相和拉伸断口形貌,并进行力学性能测试。结果表明,脉冲磁场在Al-6.15Zn-1.41Mg-1.45Cu合金经时效过程中,提高扩散系数,提高析出相的形核率,使得时效后,基体中出现弥散细小的析出相。经脉冲磁场双级时效处理(121℃×90 min+177℃×60 min)后,抗拉强度为495.43 MPa,硬度为156.3 HV5,相比于常规的双级时效处理,抗拉强度提升20.83%,硬度提升17.89%,时效保温时间缩短87.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号