首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
针对镁合金的棒材的工业化制备和加工,提出了一种新型的镁合金复合挤压方法,将正挤压(Extrusion)和剪切(Shear)结合(简称ES),建立了ES挤压的三维有限元热力耦合模型及条件,模拟了ES挤压的流动网格、累积应变演化,设计并制造了适合于卧式挤压机上的ES挤压模具,进行了ES工艺实验。数值模拟结果表明,ES挤压可以显著提高镁合金变形过程的累积应变;试验结果表明,ES挤压可以得到尺寸很小的动态再结晶晶粒,并改善了组织均匀性;理论分析表明,ES挤压过程镁合金具有多级动态再结晶的特性,可以逐步有效的细化微观组织。ES挤压在模具结构、工艺参数合理的条件下可以大大细化镁合金微观组织,并具有工业生产的实用性。  相似文献   

2.
借鉴正挤压与多道次等通道挤压的特点提出了挤压(Extrusion)-剪切(Shear)复合挤压工艺(简称ES),制造了多副适合工业卧式挤压机的ES变形组合凹模,进行了ES挤压和普通挤压实验。构建了ES挤压和普通挤压的三维有限元热力耦合模型及数值模拟条件,对ES挤压过程的挤压力、累积应变演化进行了计算机模拟仿真。通过对坯料的应力状态进行了计算机模拟分析,发现ES挤压过程局部坯料受到四向压应力,ES挤压与普通正挤压相比可以显著提高镁合金变形过程的累积应变,因此可以更有效的细化晶粒。针对ES挤压和普通挤压棒料的不同位置进行了微观组织观察,发现在挤压温度为370℃、挤压比为12时ES挤压可以有效的细化晶粒,不仅可以细化棒材表层晶粒,心部也得到了细化。  相似文献   

3.
应用挤压-剪切大变形工艺细化AZ31镁合金晶粒(英文)   总被引:1,自引:0,他引:1  
提出一种新型的镁合金复合挤压方法,将传统的挤压和大塑性变形方法等通道挤压相结合,也就是将压缩变径挤压和剪切(一次或者连续二次)相结合(简称ES)。根据ES变形的思想,设计并制造了适合热模拟仪Gleeble1500D的ES挤压装置,进行了不同温度下的AZ31镁合金ES挤压测试,观察了ES挤压所得到的AZ31镁合金挤压棒的微观组织。结果表明:当挤压比为4时,ES挤压的累计应变为2.44,可得到平均尺寸为2μm的微观组织。动态再结晶的发生是ES挤压产生晶粒细化的主要原因。根据ES热模拟挤压过程的应力—应变曲线和挤压力曲线的特点,ES热模拟实验中镁合金发生了与一般动态再结晶过程不一样的再结晶过程,具有明显的两个动态再结晶阶段,被称为双级动态再结晶。基于热模拟的ES挤压证明了ES挤压是可行的。生产实践结果表明,不同条件下的工业ES挤压可大批量生产镁合金挤压棒材。  相似文献   

4.
分别采用传统反挤压和大塑性变形下的新型反挤压两套模具对2A12铝合金进行了成形实验,制得了两种杯形件,并基于Deform-3D有限元模拟软件对成形过程进行了有限元仿真模拟。通过模拟对比了两种反挤压方法在挤压过程中坯料的变形情况与应变大小,通过拉伸试验与金相试验,对比研究了新型反挤压与传统反挤压杯形件在力学性能、显微组织方面的区别。结果表明,新型反挤压工艺在金属挤压成形过程中对晶粒的细化起到明显的作用,更细、更均匀的晶粒尺寸可以使金属拥有更好的力学性能。因此,新型反挤压工艺可以明显改善所获得杯形件的力学性能。  相似文献   

5.
等径角挤压是一种能有效细化材料的微观组织、提高材料综合性能、改善难变形材料成形性的新技术.采用商用有限元软件DEFORM-3D的热力耦合分析技术,对TC4合金的等径角挤压工艺进行了数值模拟.着重探讨了温度、变形速度及润滑条件等工艺参数对挤压过程中坯料温度场的影响.模拟结果表明,在实验条件下,坯料主要变形阶段的变形温度保持在大约600℃,在此温度TCA合金等径角挤压后晶粒细化最佳,为工艺实验的进行提供了科学的依据.  相似文献   

6.
汽车轻量化需要细化金属晶粒,提高板料综合性能,因而研究并优化模具结构、改善变形过程成为AZ31镁合金板材塑性成形工艺当前的研究内容。提出了减径通道转角(ICAE)挤压工艺。试验研究了ICAE制备的200 mm×2 mm的AZ31镁合金板材组织与性能,结果表明:在ICAE过程中,通过晶粒破碎和动态再结晶可以显著细化合金晶粒,挤压后的平均晶粒尺寸约为2~4μm,且晶粒大小均匀,力学性能较传统方法成形的挤压板材大幅度提高。  相似文献   

7.
面向等径道角挤压成形应变均匀性和成形力,以3003铝合金为研究对象,采用有限元法分析不同模具外角、内角、内角半径挤压变形的等效应变均匀性和挤压成形力。研究结果表明:外角ψ对等效应变均匀性影响显著,而内角φ主要对挤压成形力影响较大,内角半径r对二者影响不明显。因此采用合理的模具结构参数,既可以提高应变均匀性,又能降低挤压成形力。基于正交试验分析得到了模具结构参数为:ψ=40°,φ=105°,r=1.5 mm,这为研究试样宏观塑性变形与细化晶粒微观组织演变规律、模具结构设计参数提供理论依据。  相似文献   

8.
塑性变形对AZ31镁合金晶粒细化的影响   总被引:2,自引:1,他引:1  
利用6300kN液压机通过挤压的方法研究了塑性变形对AZ31镁合金晶粒细化的影响.实验表明:挤压变形可显著地细化镁合金晶粒并提高镁合金的力学性能;随挤压比的增大,晶粒细化程度增加,金属的协调变形能力增加,塑性增加;并且通过适当控制成形温度,平均品粒直径可控制在3~5μm之内.  相似文献   

9.
采用Deform-3D软件模拟了ZK60镁合金关于等通道角挤压(ECAP)及二次挤压的变形过程并进行试验验证。研究了ECAP和二次挤压对晶粒细化效果的影响,讨论了ECAP和二次挤压过程中材料流动和变形均匀性以及挤压载荷和有效应变的变化规律。模拟结果表明,在275~300℃进行ECAP,再在150℃下进行二次挤压,试样可以获得较大的分布均匀的应变,从而获得良好性能的超细ZK60镁合金。试验所得晶粒细化的结果与模拟结果符合。  相似文献   

10.
将TA11合金的微观组织模型写入DEFORM-3D软件的用户子程序中,使其具备了对TA11合金热成形过程中微观组织的预测及模拟功能,并通过对圆柱体镦粗过程的模拟验证了程序的可靠性。以TA11合金叶片的挤杆过程为研究对象,对其微观组织变化进行数值模拟,研究了变形工艺参数对变形过程中微观组织变化的影响。结果表明,合适的变形速度、变形温度和压下量可以使晶粒细化,组织分布均匀,从而提高锻件的力学性能。  相似文献   

11.
A new serve plastic deformation(SPD) including initial forward extrusion and subsequent shearing process(ES) was proposed.The influence of the ES forming on the grain refinement of the microstructure was researched.The components of ES forming die were manufactured and installed to Gleeble1500D thermo-mechanical simulator.The microstructure observations were carried out on the as-extruded rods(as-received) and ES formed rods.From the simulation results,ES forming can increase the cumulative strain enormousl...  相似文献   

12.
通过等温挤压和金相观察,研究了AZ31和AZ91镁合金不同变形条件下的挤压性能和变形后的微观组织变化。结果表明,AZ31镁合金的挤压变形性能较好,而AZ91镁合金在挤压比为4∶1、挤压温度为400℃,以及在挤压比为9∶1、挤压温度为350℃和400℃时,挤压后的试件表面均出现了裂纹;AZ31镁合金的最佳成形温度为300℃~400℃,AZ91镁合金的最佳成形温度为300℃~350℃;镁合金在热挤压过程中发生了动态再结晶,挤压之后合金的晶粒显著细化。  相似文献   

13.
In this paper, a new method for analyzing the microstructure evolution of aluminum during deformation at elevated temperatures by extrusion is presented, which is entirely separated from secondary restoration effects viz. static recrystallization and grain growth. In order to observe the development of grains and their orientation under severe plastic deformation, a small-scale forward extrusion setup was designed which allows quenching the extrusion butt together with the die and the container immediately after extrusion to preserve the grain structure evolved during the deformation. The forming path and the forming history of a selected material point were calculated by numerical simulation. The evolution of the microstructure along the forming path was analyzed using electron backscatter diffraction. A database for the development of physically based phenomenological models for predicting and simulating the evolution of microstructure during the hot deformation of EN AW-6082 alloy is provided.  相似文献   

14.
The effect of vanadium nitride (VN) particles additives on microstructure and mechanical properties of the extruded AZ31 Mg alloy was systematically investigated. The experimental results revealed that the addition of 0.5 wt% VN decreased the average grain size of AZ31 Mg alloy from 6.4 to 4.9 µm. With the increase in VN content, the refining effect would weaken because excessive VN particles would negatively affect the dynamic recrystallization process of the alloys. The scanning electron microscopy and energy-dispersive spectroscopy indicated that AlN, VN and Al-V-N particles with different morphologies were distributed in the streamline along the extrusion direction during the extrusion process. The mechanical properties of AZ31 Mg alloy vary with the addition of VN. The extruded AZ31 + 0.5 wt% VN Mg alloy possesses an excellent combination of high strength and ductility. The yield strength and ultimate tensile strength of the extruded AZ31 + 0.5 wt% VN Mg alloy were increased without sacrificing ductility. This is mainly due to the grain refinement caused by double-heterogeneous nucleation particles. With a further increase in VN content, the presence of excessive VN particles increases the stress concentration, and the initiation source of microcracks in the alloy during alloy deformation makes the cracks more easily propagated and results in a decrease in the ductility of the extruded alloy.  相似文献   

15.
A novel continuous plastic process employed on AZ31 Mg alloy called closed forging extrusion (CFE) was presented. The optical microscopy, scanning electron microscopy, electron back-scatter diffraction and tensile and compressive tests were employed to investigate the microstructure evolution and strengthening mechanism. The results indicated that the CFE-process can promote dynamic recrystallization (DRX), eliminate the coarsen unDRXed grain regions, refine the grains effectively, and improve the strength, plasticity and anisotropy of the alloy. The grain refinement was mainly attributed to the stress, which facilitated the nucleation of recrystallization and refined the microstructure via the CFE. The fully DRXed ultrafine grained structure improved the strength and plasticity simultaneously. After 60 s closed forging and continuous extrusion, the alloy exhibits relatively high TYS, UTS, CYS, elongation and yield asymmetry of 305 MPa, 337 MPa, 295 MPa, 27% and 0.97, respectively.  相似文献   

16.
研究了镁合金的变形温度、变形程度对塑性成形的影响,介绍了实验用的模具和设备,从润滑剂的选用、挤压速度、挤压温度、坯料加热几方面介绍了镁合金的挤压工艺,得出镁合金在等温复合挤压条件下成形性能较好的结论。制定的AZ31镁合金挤压工艺及工艺参数是合理的,对于实际生产有参考作用。  相似文献   

17.
A new severe plastic deformation method for manufacturing tubes made of AZ31 magnesium alloy with a large diameter was developed, which is called the TCESE (tube continuous extrusion?shear?expanding) process. The process combines direct extrusion with a two-step shear?expanding process. The influences of expanding ratios, extrusion temperatures on the deformation of finite element meshes, strain evolution and flow velocity of tube blanks during the TCESE process were researched based on numerical simulations by using DEFORM-3D software. Simulation results show that the maximum expanding ratio is 3.0 in the TCESE process. The deformation of finite element meshes of tube blanks is inhomogeneous in the shear?expanding zone, and the equivalent strains increase significantly during the TCESE process of the AZ31 magnesium alloy. A extrusion temperature of 380 °C and expanding ratio of 2.0 were selected as the optimized process parameters from the numerical simulation results. The average grain size of tubes fabricated by the TCESE process is approximately 10 µm. The TCESE process can refine grains of magnesium alloy tubes with the occurrence of dynamic recrystallization. The (0001) basal texture intensities of the magnesium alloy tube blanks decrease due to continuous plastic deformation during the TCESE process. The average hardness of the extruded tubes is approximately HV 75, which is obviously improved.  相似文献   

18.
研究了金属Ca变质处理及热挤压变形对镁合金组织、晶粒大小的影响.结果表明:0.4%的Ca能使AZ31镁合金的β-Mg_(17)Al_(12)组织明显球化,均匀化处理后晶粒尺寸由变质前的546μm降至147μm;另外,400℃下热挤压也能强烈地细化组织,平均晶粒尺寸降至20μm以下,其机理是发生了动态再结晶与孪生变形.  相似文献   

19.
The paper presents a new extrusion method,alternate forward extrusion,in which the punch was replaced with double-split structures so as to achieve the grain refinement for material near the interface of double-split structures.The results showed that the unique loading mode made metal flow sequence and behavior significantly changed during alternate forward extrusion.The additional shear deformation produced by the double-split punch structures resulted in a refining effect on the microstructure of the blank,which was then further refined during flow through the die orifice owing to shear deformation.Compared with the conventional extrusion,the recrystallization process in the alternate forward extrusion process produced grains that were smaller and more homogeneous in size.The recrystallization process was more abundant,and the dislocation density was significantly increased.It can be concluded that the alternate forward extrusion process could achieve fine-grained strengthening,which provided technical support and scientific guidance for the engineering application of magnesium alloy extrusion forming technology.  相似文献   

20.
采用挤压-剪切法(ES)在不同剪切角(150°、135°和120°)下制备了AZ31棒材。采用ES工艺制备的棒材,包括直接挤压和后续剪切两部分。随后采用光学显微镜、扫描电镜和电子背散射衍射(EBSD)等方法研究了具有双峰晶粒结构的AZ31镁合金的显微组织演变,从取向分布图中可清晰的观察到细晶粒包围狭长变形粗晶的混晶结构,且大晶粒区域的占比会随应变的增加而增大。整体来看,因为应变量和动态再结晶分数都会随着剪切角的减小而增加,导致大晶粒的占比增大,而小晶粒尺寸增加。室温压缩实验中,随着剪切角的减小,屈服强度和峰值强度逐渐增大。此外,ES挤压的基面极图也会随着剪切角度的不同发生变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号