首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用电火花沉积方法将YG8电极材料沉积在球墨铸铁轧辊材料上,制备了WC沉积涂层,研究了其微观组织及耐磨性能.结果表明:沉积层主要由Fe_3W_3C、Co_3W_3C、W_2C和Fe_7W_6等相组成,沉积层与基体呈冶金结合,Fe_7W_6、W_2C等硬质相弥散分布于沉积层中,部分区域硬质相达到了纳米颗粒尺寸;沉积层硬度分布不均匀,平均硬度为1759 HV0.3;沉积层具有优异的耐磨性,其磨损性能是基体的3.7倍;沉积层的磨损机理以粘着磨损和疲劳磨损为主,细小的弥散分布的硬质相是沉积层硬度以及耐磨性提高的主要因素.  相似文献   

2.
以YG8合金为电极,1Cr18Ni9Ti不锈钢为基体,研究了电火花沉积工艺对沉积层组织结构及沉积层性能的影响.研究结果表明,电火花沉积功率和沉积时间对电火花沉积层的厚度和硬度有一定的影响;沉积工艺影响沉积层内合金元素的分布,导致沉积层内的碳化物有明显的差异.当小功率短时间沉积时,白亮层的物相主要为Cr0.19Fe0.07Ni0.01、WC1-x、CoCx和少量的Ni-Cr-Fe;使用大功率长时间沉积时,白亮层的物相主要为(Cr Fe)7C3、CrC、Co3W3C和Ni-Cr-Fe.  相似文献   

3.
电火花沉积工艺对点焊电极TiC沉积层厚度的影响   总被引:3,自引:0,他引:3  
为了改善镀锌钢板点焊电极的寿命,选用铬锆铜球型点焊电极,以TiC作为熔敷材料,进行了点焊电极表面电火花沉积TiC工艺试验。通过正交试验考察了沉积工艺参数(电容、基体电极转速、振动频率、沉积时间)以及前处理与后处理对沉积层厚度的影响。结果表明,电容是影响电火花沉积层厚度的主要因素;振动频率对沉积层厚度有一定的影响;基体电极转速、沉积时间对沉积层厚度影响较小。试验条件下最佳的工艺参数是:电容量30000μF,基体电极转速1320r/min,振动频率50Hz,沉积时间120s。前处理(沉积前清洗)对其厚度影响很小。后处理(沉积后700℃×30min退火)促进元素扩散并减小沉积层厚度。  相似文献   

4.
以YG8合金为电极,1Cr18Ni9Ti不锈钢为基体,研究了电火花沉积工艺对沉积层组织结构及沉积层性能的影响。研究结果表明,电火花沉积功率和沉积时间对电火花沉积层的厚度和硬度有一定的影响;沉积工艺影响沉积层内合金元素的分布,导致沉积层内的碳化物有明显的差异。当小功率短时间沉积时,白亮层的物相主要为Cr0.19Fe0.07Ni0.01、WC(1-x)、CoCx和少量的Ni-Cr-Fe;使用大功率长时间沉积时,白亮层的物相主要为(CrFe),C3、CrC、Co3W3C和Ni-Cr-Fe。  相似文献   

5.
《铸造技术》2017,(6):1360-1362
通过电火花强化工艺在不锈钢机械臂表面制备了YG8强化层,采用金相显微镜、X射线衍射分析、硬度和摩擦磨损试验等对物相组成、硬度分布和耐磨性能进行了测试,并分析了表面强化层的作用机理。结果表明,表面强化层中的物相组成为Co_3W_3C、Fe_3W_3C、Fe_7W_6C、Fe_3Mo_3C、W_2C和(Fe,Cr)相;不锈钢机械臂表面强化层的显微硬度远远大于基材硬度,且中间过渡区硬度也相较于基材更高;在相同摩擦磨损时间下,不锈钢基体的摩擦系数都高于表面强化层;不锈钢机械臂表面强化层的相对耐磨性为基体的3.4倍,其磨损机制为磨粒磨损。  相似文献   

6.
利用DZ-4000(Ⅲ)型电火花沉积/堆焊机,以WC为电极材料,采用氩气为保护气对H13钢基体进行了电火花表面强化.利用扫描电镜、能谱分析仪、X射线衍射仪和显微硬度计等对沉积层的成分、组织、硬度和表面粗糙度进行了研究.结果表明,利用电火花沉积工艺可获得组织均匀、致密,且与基体呈冶金结合的沉积层,沉积层平均厚度约60μm.沉积层主要由Fe3W3C、(CrFe)7C3和W2C等相组成.沉积层的平均显微硬度为1321.4 HV0.05,约为基体硬度的3倍.  相似文献   

7.
电火花沉积工艺对不锈钢沉积层组织结构的影响   总被引:4,自引:0,他引:4  
采用新型电火花沉积设备,把YG8电极材料沉积在基体材料不锈钢(1Crl5Ni9Ti)上,采用X射线仪和扫描电镜分析了白亮层的组织结构和元素分布。研究结果表明沉积工艺对沉积层的相结构和元素分布有影响。  相似文献   

8.
40Cr钢表面电火花沉积WC的界面行为   总被引:3,自引:0,他引:3  
以WC合金作为电极,氩气为保护气体,采用电火花沉积技术在40Cr钢表面沉积WC合金层,通过显微硬度计、扫描电镜(SEM)及能谱分析(EDS),X射线衍射等测量方法,研究了40Cr钢表面电火花沉积WC层的显微硬度、表面状态、界面行为及相结构组成.结果表明,WC合金电火花沉积层存在微裂纹及气孔,主要由W、Fe6W6C、Fe3C和Cr23C6等相组成;沉积层显微硬度达820 HV,为基体的4.5倍;沉积层断面连续、致密,厚度为30 μm;沉积层与基体之间发生了元素的相互扩散与合金化过程,呈冶金结合,无明显界面.  相似文献   

9.
采用新型电火花沉积设备,将亚微米WC-4Co陶瓷硬质合金材料沉积在铸钢材料上,制备电火花沉积合金涂层,利用SEM和XRD等技术研究沉积层与基体间的界面行为,分析沉积层的表面润湿性、物相形成机理、微观组织结构、界面元素分布、界面结合机理和显微硬度变化等。结果表明:电火花沉积技术可以在金属基体表面制造出微纳米非晶高熔点强化层。铸钢表面沉积层主要由Fe3W3C、Co3W3C、Si2W和Fe2C等相组成;沉积层与基体呈冶金结合,过渡层中出现一些柱状晶和等轴晶的组织结构,沉积层中细小的Fe2C和Si2W等硬质相颗粒弥散分布于Fe3W3C和Co3W3C沉积层上。沉积层的厚度大于20μm,沉积层的平均显微硬度为1803.2 HV,细小弥散分布的硬质相是沉积层硬度提高的主要因素。  相似文献   

10.
电火花沉积工艺及沉积层性能的研究   总被引:8,自引:4,他引:8  
王建升 《表面技术》2005,34(1):27-30
为了研究电火花沉积工艺对沉积层组织结构及沉积层性能的影响,改善电火花沉积层的表面质量.采用新型电火花沉积设备,以YG8电极材料,H13(4Cr5MoSiV)钢为基体材料进行了沉积实验.通过工艺实验,研究了沉积时间、沉积功率、沉积电压、沉积频率和沉积气氛对沉积层的影响规律,用X射线衍射仪分析了沉积层的组织结构,通过硬度实验和抗磨损实验测定了沉积层的纤维硬度和抗磨损性能.试验表明,电火花沉积工艺对沉积层的组织结构和沉积层性能有影响,沉积层内的白亮层含有大量复杂化合物,具有高的纤维硬度和高的耐磨性.  相似文献   

11.
目的提高H13钢表面的力学性能和耐蚀性,延长模具的使用寿命。方法用Nb棒作为电极,氩气作为保护气体,通过电火花沉积技术在H13钢表面制备Nb沉积层。利用扫描电子显微镜分析沉积层的表面形貌、显微结构及磨痕形貌,利用X射线衍射仪分析沉积层的相组成,利用能谱仪分析沉积层的元素分布,采用显微硬度计和磨损试验机测试沉积层的显微硬度和耐磨性,采用电化学工作站对沉积层进行耐蚀性测试。结果 Nb电火花沉积层表面呈橘皮状,具有一定的粗糙度,主要由Fe_2Nb和Fe_(0.2)Nb_(0.8)等相组成。沉积层截面组织连续、致密,无明显缺陷,强化层内存在大量的微晶组织和非晶组织。Nb涂层与基体发生了元素的相互扩散和冶金结合的过程。沉积层显微硬度高达642HV,为基体的3.2倍。在同等磨损条件下,Nb沉积层磨损失重约为基体的1/3,磨痕较浅。沉积层在3.5%NaCl溶液中的电化学自腐蚀电位比基体提高了113 mV,自腐蚀电流密度显著降低。结论在H13钢表面电火花沉积Nb涂层,可有效提高其表面的显微硬度、耐磨性和耐蚀性,从而延长模具的使用寿命。  相似文献   

12.
BT20钛合金表面电火花沉积WC涂层微观组织研究   总被引:2,自引:0,他引:2  
以WC为电极,氩气为保护气,采用电火花沉积方法在BT20钛合金基体上制备了强化沉积层。利用SEM、EDS和XRD分析了沉积层的微观结构和物相,利用显微硬度计测试了沉积层截面的显微硬度。结果表明,沉积层主要由TiC、WC、W和W2C相组成,TiC是电极材料与基体材料反应形成新相,是沉积层的主要组成相;沉积层与基体结合致密,形成良好的冶金结合。沉积层表面呈"泼溅状"形貌,截面组织形貌中观察到纳米级微晶堆垛结构和少量的树枝晶,反映了电火花沉积过程的快速加热和冷凝机制。沉积层显微硬度呈梯度变化,涂层最大硬度是基体的3倍。  相似文献   

13.
为了改善镀锌钢板点焊电极的寿命,选用铬锆铜球型电极,以TiC作熔敷材料,对点焊电极表面进行了电火花振动熔敷功能强化层工艺试验.通过正交试验考察了沉积工艺参数(电容、基体转速、振动频率、沉积时间)对沉积层硬度和厚度的影响.结果表明,电容是影响电火花沉积层硬度和厚度的主要因素;振动频率对沉积层性能有一定的影响;基体转速、沉积时间对沉积层性能影响较小.试验条件下最优工艺参数为电容量30000 μF,基体转速1320 r/min,振动频率50 Hz,沉积时间120 S.  相似文献   

14.
采用新型电火花沉积设备,把WC-8Co陶瓷硬质合金材料沉积在铸钢材料上,制备了电火花沉积合金涂层,用SEM、XRD等技术研究了沉积层在500℃的高温耐磨性和800℃高温氧化100 h后氧化膜形貌图、组织结构和高温抗氧化性能。结果表明:沉积层厚度为20~30μm。500℃高温条件下沉积层的耐磨性比基体提高了3.3倍,500℃高温条件下沉积层的磨损机理主要是粘着磨损、疲劳磨损、氧化磨损和磨粒磨损的综合作用。800℃高温条件下沉积层氧化100 h后的氧化膜的厚度约为10μm;氧化膜主要由FeFe_2O_4、Fe_2O_3、Fe_5C_2和Fe_2W物相组成;800℃高温下沉积层抗氧化性能比基体的抗氧化性能提高了4.8倍。细小弥散分布的硬质相和致密的氧化膜极大提高了沉积层的抗高温磨损性能和抗高温氧化性能。  相似文献   

15.
铸钢表面电火花沉积层摩擦磨损性能   总被引:3,自引:0,他引:3  
采用新型电火花沉积设备,把WC-4Co陶瓷硬质合金材料沉积在铸钢材料上,制备了电火花沉积合金涂层,用SEM、XRD等技术研究了沉积层的物相、微观组织结构、元素分布、显微硬度及室温高温耐磨性能及磨损机理。结果表明:沉积层主要由Fe3W3C、Co3W3C和Fe2C等相组成;沉积层与基体呈冶金结合,过渡层出现一些柱状晶和树枝状晶组织结构,沉积层中细小的Fe3W3C和Co3W3C等硬质相颗粒弥散分布于Fe2C基体上。沉积层的平均显微硬度为1803.2 HV;室温下沉积层的耐磨性和300℃高温条件下沉积的耐磨性分别比同样条件下铸钢材料的磨损性能提高了2.5倍和3.4倍;不论室温还是300℃高温条件下沉积层的磨损机理主要是粘着磨损、疲劳磨损、氧化磨损和磨粒磨损的综合作用,细小的弥散分布的硬质相是沉积层硬度及耐磨性提高的主要因素。  相似文献   

16.
采用新型电火花设备在铸钢表面制备了YG8涂层,采用SEM、XRD技术研究其微观组织和耐磨性能。结果表明:沉积层主要由Co3W3C、Fe3W3C、Fe3Mo3C、WC1 x和Fe7W6C等相组成;沉积层与基体冶金结合,细晶碳化物相弥散分布在沉积层中,能提高沉积层的硬度,平均硬度为1 896.8HV,比基体硬度提高了5倍;沉积层磨损性能是基体的3.4倍,沉积层磨损机理主要是粘着磨损、颗粒磨损和氧化磨损的综合作用;沉积时骤热骤冷过程中形成的细晶粒硬质相是提高沉积层硬度和耐磨性的主要因素。  相似文献   

17.
在QAl9-4铜合金上进行了同种金属沉积试验,研究了电火花沉积铜及铜合金的技术特点。结果表明,利用电火花沉积技术可以实现铜合金的大厚度沉积,获得了厚度达1.67 mm的沉积层;沉积层连续均匀,由大量近纳米尺寸的柱状晶组成,与基体呈冶金结合;沉积效率和电极损失率都随沉积功率的提高呈近似线性增大趋势;沉积率随沉积功率的增大呈现先增大,再保持,后降低的趋势;电极材料的物质过渡由电火花放电飞溅、熔化材料离心飞溅、熔融熔化材料摩擦涂覆组成。  相似文献   

18.
H13钢电火花沉积层组织结构的研究   总被引:6,自引:0,他引:6  
采用新型电火花沉积设备,把YG8电极材料沉积在基体材料H13(4Cr5MoSiV)钢上,采用X射线仪和扫描电镜分析了白亮层的组织结构和元素分布。研究结果表明沉积工艺对白亮层的相结构和元素分布有影响。  相似文献   

19.
铸钢轧辊电火花沉积WC-4Co涂层组织和性能分析   总被引:2,自引:2,他引:0       下载免费PDF全文
采用新型电火花沉积设备,把陶瓷WC-4Co电极材料沉积在铸钢轧辊材料上,制备了WC-4Co沉积涂层,研究了其微观组织及耐磨性能.结果表明,沉积层主要由Fe3W3C,Co3W3C,Fe和SiC等相组成;沉积层与基体呈冶金结合,过渡层组织主要是柱状晶结构组织;Fe3W3C和Co3W3C等硬质相弥散分布于沉积层Fe基体上,部分区域硬质相达到了纳米颗粒尺寸;沉积层硬度的平均硬度为1617.2HV;沉积层较铸钢轧辊的磨损性能提高了2.1倍,沉积层的磨损机理主要是粘着磨损、疲劳磨损、氧化磨损和磨粒磨损的综合作用,细小的弥散分布的硬质相是沉积层硬度及耐磨性提高的主要因素.  相似文献   

20.
钛合金材料表面电火花沉积镍层工艺的研究   总被引:5,自引:0,他引:5  
利用新型电火花强化技术在钛合金材料表面沉积一层镍,可形成一种高性能的耐磨层:通过对沉积层表面及界面形貌、沉积层界面元素分布与面分布及沉积层相组成结构等多项技术指标进行分析。结果表明,沉积层主要由α-Ti、β-Ti、TiNi金属间化合物组成,并具有超细组织结构;沉积层与基体间存在明显的元素过渡分布区,其中Ti元素与电极材料Ni发生冶金化合反应后形成新的化学相TiNi,对沉积层性能的改变起重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号