首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
对镀镍钴钢带进行不同温度的热处理,热处理温度为550℃、650℃、750℃,保温时间3h。采用电化学方法测试了不同热处理温度下镀镍钴钢带在1.0%NaCl和0.1%H2SO4混合溶液及10%NaOH溶液中的耐腐蚀性能,并通过扫描电子显微镜(SEM)、能谱分析仪(EDS)和X射线衍射仪(XRD)分析了镀镍钴钢带在不同热处理温度下的微观形貌、成分及织构变化。结果表明,随着热处理温度的升高,镀镍钴钢带表面镀层的晶粒尺寸逐渐长大,镀层和基底间形成了镍/钴/铁扩散层;当热处理温度为650℃时,镀镍钴钢带在1.0%NaCl和0.1%H2SO4混合溶液及10%NaOH溶液中的耐腐蚀性能均为最好的,当热处理温度超过650℃后其耐腐蚀性能降低。这说明合适的热处理温度能有效地提高镀层的耐腐蚀性能。  相似文献   

2.
采用不同工艺参数对Q420冷轧建筑钢进行了热处理,并测试与分析了Q420钢的耐腐蚀性能和拉伸性能。结果表明:随热处理温度从750℃上升至850℃,或热处理时间从0.5 h增加至2.5 h,试样的质量损失率先减小后增大,抗拉强度先增大后减小,试样的耐腐蚀性能和拉伸性能均先提高后下降。为提高Q420建筑钢结构件的耐腐蚀性能和拉伸性能,最佳热处理温度和时间分别为825℃、1.5 h。  相似文献   

3.
采用不同热处理工艺(热处理温度、热处理时间和冷却方式)对含镁铝新型建筑结构材料进行了热处理,并进行了电化学腐蚀试验。结果表明:在热处理时间4h时,随热处理温度从600℃升高至800℃或在热处理温度675℃时,热处理时间从2h延长至5h,材料的耐腐蚀性能均先提高后下降。在热处理时间4h时,675℃热处理比600℃热处理的腐蚀电位正移116mV、腐蚀电流密度减小56%;在热处理温度675℃时,4h热处理比2h热处理的腐蚀电位正移81mV、腐蚀电流密度减小41%;在热处理675℃×4h时,炉冷比水冷的腐蚀电位正移157mV、腐蚀电流密度减小50%。  相似文献   

4.
采用不同温度对特种机床用304不锈钢双极板进行了热处理,并进行了接触电阻以及不同温度下耐腐蚀性能的测试与分析。结果表明:随热处理温度从800℃升高至1200℃时,双极板的耐腐蚀性能先提高后下降,接触电阻先减小后基本不变再增大;当热处理温度为1100℃时,双极板的接触电阻最小,腐蚀电位最正,45℃测试的腐蚀电位为-0.517 V,90℃测试的腐蚀电位为-0.535 V。双极板的热处理温度不宜过高也不宜过低,优选为1100℃。  相似文献   

5.
《铸造技术》2016,(5):933-936
采用超音速火焰喷涂法对物理探测仪器表面进行改性处理,研究了原始喷涂态和不同热处理态的喷涂涂层的耐磨性能和耐腐蚀性能。结果表明,经过热处理后的喷涂涂层的耐磨性能都有所提高,随着热处理温度的升高,耐磨性能有先降低而后升高的趋势,在热处理温度为900℃时取得最佳的耐磨性能;涂层的腐蚀电位从低至高依次为:1 100℃热处理态700℃热处理态原始喷涂态900℃热处理态500℃热处理态,热处理温度为500℃和900℃的喷涂涂层的耐腐蚀性能较好。  相似文献   

6.
对含微量合金元素V和Mo的新型建筑耐火耐候钢进行了不同温度和时间的热处理,并进行了高温力学性能和耐腐蚀性能的测试与分析。结果表明:随热处理温度从525℃提高至625℃或热处理时间从25 min延长至40min,600℃抗拉强度和屈服强度均先增大后减小,断后伸长率先减小后基本不变,240 h盐雾腐蚀的质量损失率前期减小。新型建筑耐火耐候钢的热处理温度和热处理时间分别优选为575℃和35 min。  相似文献   

7.
焊后热处理对L245NCS微合金钢焊接残余应力的影响   总被引:1,自引:0,他引:1  
采用履带式电加热法对L245NCS微合金钢焊接接头进行了不同退火温度和不同保温时间的焊后热处理,采用小孔法测量焊接残余应力。结果表明,560℃退火保温3.0 h焊后热处理方案和620℃退火保温1.5 h焊后热处理方案对降低焊接残余应力均较明显,其中560℃×3.0 h焊后热处理消除残余应力的松弛率在50%左右,620℃×1.5 h焊后热处理方案消除残余应力的松弛率基本高于80%,说明延长保温时间并不能有效地降低焊接残余应力。620℃×1.5 h焊后热处理方案对于消除L245NCS微合金钢焊接残余应力更为有效。  相似文献   

8.
薛燕  王振国 《表面技术》2017,46(3):79-83
目的提高镁合金表面Ni-P-SiC复合镀层的耐腐蚀性能和耐磨性能。方法采用加入SiC微粒的Ni-P化学镀溶液,在AZ91D镁合金表面制备Ni-P-SiC复合镀层,并在不同温度下进行热处理,通过X射线衍射(XRD)、显微硬度测试、电化学腐蚀测试和摩擦磨损实验等方法分析和评价镀层的组织构成、显微硬度、耐腐蚀性能和耐磨性能。结果 Ni-P-SiC复合镀层经320℃热处理后,组织结构由非晶向晶体转变,并伴随有Ni3P相的析出。此温度下热处理的Ni-P-SiC复合镀层:显微硬度最高,可达1120HV,为未热处理时显微硬度(620HV)的1.81倍;自腐蚀电位为–0.697 V,较未热处理样品的(–0.727 V)有所提高;腐蚀电流密度基本最小,为0.984μA/cm~(–2);磨损体积最小,为0.324×10~(–3) mm~3。340℃热处理的复合镀层则磨损体积最大,为1.43×10~(–3) mm~3。结论在AZ91D镁合金表面制备的Ni-P-SiC复合镀层经过320℃热处理保温1 h后,复合镀层的硬度、耐腐蚀性能和耐磨性能均有所提高。  相似文献   

9.
目的改善H13钢表面纳米晶Cr镀层的微观结构和耐腐蚀性能。方法利用电沉积技术在H13钢表面制备纳米晶Cr镀层,并通过调整热处理工艺调控Cr镀层的结构和性能。通过扫描电子显微镜(SEM)、原子力显微镜(AFM)和X射线衍射仪(XRD)、维氏显微硬度计和中性盐雾试验(NSS)研究了不同热处理工艺下Cr镀层的表面形貌、粗糙度、相结构、硬度及耐蚀性。结果采用电沉积技术成功在H13钢表面制备出体心立方结构的纳米晶铬镀层,其晶粒和微裂纹尺寸随着热处理温度(200~600℃)和保温时间(1~2h)的增加而增大。当热处理温度达到400℃时,镀层表面检测到Cr2O3氧化层,并随着热处理温度和保温时间的增加,氧化程度逐渐增大。此外,Cr镀层硬度随着热处理温度和保温时间的增加而逐渐降低。在600℃下保温2h后,镀层硬度为(499.8±9.3)HV0.2,与镀态((749.0±13.2)HV0.2)相比,大约下降了33%。然而,经500℃和600℃热处理的镀层具有最好的耐蚀性能,盐雾试验后,镀层表面未见明显腐蚀缺陷,保护评级为10级。结论随着热处理温度和保温时间的增加,镀层晶粒变大,表面氧化程度加剧,耐蚀性能显著增强。  相似文献   

10.
采用扫描电镜(SEM)及能谱仪(EDS)、动态机械分析仪(DMA)研究了热处理温度和热处理时间对Mg-6Zn-3Cu-0.6Zr合金显微组织和阻尼性能的影响。结果表明:随着热处理温度升高,合金晶粒长大,晶界共晶体减少,合金阻尼性能提高;300℃热处理时,保温时间越长,晶界共晶体越少,晶内微小点状析出物越多,合金阻尼性能越好;当热处理工艺为400℃保温2 h时,合金阻尼性能最好,与铸态相比,其阻尼性能的提高超过一倍。不同热处理工艺对合金阻尼性能的影响规律可用G-L理论来解释。  相似文献   

11.
采用电弧喷涂技术对压铸AZ91D镁合金表面喷涂纯铝。为了提高其界面性能,对喷涂后样品在300℃、350℃、400℃和437℃分别进行1 h、5 h和10 h扩散热处理,并通过扫描电镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)、及电化学分析仪测试了其界面的微观结构和性能。结果表明:在400℃的温度下进行热处理时,其界面形成β-Mg_(17)Al_(12)相扩散层,并伴有少量γ-Mg_2A_(13)相,且扩散层厚度随保温时间的延长而增大。在温度≥400℃,保温时间较短时(1 h和5 h),界面生成γ一Mg_2A_(13)相和β-Mg_(17)Al_(12)相两个扩散层,当保温时间延长至10 h时,扩散层演变成了β-Mg_(17)Al_(12)单相层和α-Mg+β-Mg_(17)Al_(12)复合相层。相对AZ91D基体而言,各种冶金扩散层的耐腐蚀性能都有明显增强,特别是两个单相扩散层。  相似文献   

12.
王灼英 《铸造技术》2014,(6):1218-1219
采用不同的热处理工艺对新型Q 390低合金高强钢板进行热处理,分析了其显微组织和耐腐蚀性能。结果表明,低合金高强建筑钢板的最佳奥氏体化处理工艺为(920±5)℃×2 h,炉冷,其最佳淬火工艺为(855±5)℃×1 h油淬至(350±5)℃保温15 min后再继续油冷至室温。  相似文献   

13.
采用光学显微镜(OM)、扫描电镜(SEM)和电化学工作站等研究了不同热处理工艺对CoNiCrMo钴基合金显微组织和耐腐蚀性能的影响。结果表明:随着固溶温度的升高(1000~1200℃),CoNiCrMo合金的树枝晶逐渐溶解并消失,CoNiCrMo合金的耐蚀性能随着固溶温度的升高而降低,固溶温度为1000℃时,合金耐腐蚀性能好。800℃经不同时间时效处理后,析出相先增多后减少,而合金耐腐蚀性则是先降低后升高。热处理工艺对CoNiCrMo合金的微观组织结构和耐腐蚀性能有较大影响。  相似文献   

14.
《铸造技术》2017,(1):99-102
采用火焰喷涂的方法对汽车车身板进行了喷涂修复,研究了不同热处理温度对喷涂修复涂层形貌、耐磨性能和耐腐蚀性能的影响。结果表明,对原始修复涂层进行热处理后的磨损失重都有不同程度的降低,且随着热处理温度的升高,磨损质量损失呈现先降低而后升高的趋势,在热处理温度为900℃时,涂层的磨损质量损失最小。随着热处理温度的升高,涂层的腐蚀质量损失呈现先增加而后降低最后又增加的趋势,在热处理温度为500℃时涂层的腐蚀质量损失最小。  相似文献   

15.
将表面电镀纳米Ni-W合金镀层的p110SS油管钢在不同温度和保温时间下进行热处理,通过X射线衍射分析(XRD)、能谱分析(EDS)、电化学试验、显微硬度计、金相显微镜等方式研究不同温度和保温时间的热处理对纳米Ni-W合金镀层性能的影响。结果表明,Ni-W合金镀层的主要成分为Ni17W3,镀层的平均晶粒尺寸为5.8 nm。随着热处理温度的升高,镀层的硬度先升高后降低,达到500 ℃时镀层的显微硬度达到最大值1196 HV0.1;镀层的腐蚀速率先减少后增大,500 ℃时腐蚀速率达到最低的0.1258 mm/a。镀层的硬度随着保温时间的增加逐渐减少,腐蚀速率随着保温时间的增加逐渐增加,保温1 h镀层的硬度最高,耐腐蚀性最好。经过热处理后的镀层与基体结合良好,均达到一级标准。纳米Ni-W合金镀层的最优热处理工艺为500 ℃保温1 h。  相似文献   

16.
采用正交试验设计法研究了固溶时间、时效温度和时效时间三因素对Mg-5. 0Sm-0. 6Zn-0. 5Zr(质量分数,%)合金组织、散热性能和力学性能的影响及其显著性。结果表明,各因素对合金组织影响的主次顺序为固溶时间时效温度时效时间,对合金散热性能影响的主次顺序为时效时间时效温度固溶时间,对合金力学性能影响最显著的为时效温度,固溶时间和时效时间影响相对较弱。采用固溶温度520℃、固溶时间4 h,时效温度180℃、时效时间40 h的热处理工艺能使合金获得较好的散热性能。采用固溶温度520℃、固溶时间8h,时效温度200℃、时效时间10 h的热处理工艺能使合金获得较好的力学性能。而采用固溶温度520℃、固溶时间4 h,时效温度200℃、时效时间40 h时,合金可以获得较好的综合性能。  相似文献   

17.
用热处理正交实验方法研究了淬火工艺与回火工艺对KT5331(10Cr11Co3W3Ni Mo VNb NB)钢力学性能的影响。结果表明,KT5331钢的最佳热处理工艺为1080℃保温60 min淬火,680℃保温2 h以上回火,组织为板条状的回火马氏体;淬火和回火参数中,回火温度是影响KT5331钢热处理后力学性能的最主要因素,淬火温度及回火温度对冲击功影响最为明显。淬火温度由1080℃升高至1120℃时奥氏体晶粒出现明显长大;随回火温度升高,材料屈服强度、抗拉强度和硬度明显降低,而冲击功显著升高。  相似文献   

18.
研究了固溶和时效热处理以及涂装对A356合金轮毂的力学性能和显微组织的影响,并对拉伸断口形貌进行了观察。结果表明,A356合金轮毂适宜的热处理工艺为:固溶温度为530℃、固溶时间为3 h、淬火温度为60℃、淬火时间为120 min、时效温度为160℃和时效时间3 h;铸态A356合金轮毂由初生α-Al枝晶和不均匀分布的共晶硅相组成,T6和T6+涂装态A356合金中的共晶硅相发生球化,尺寸相对较小且分布更加均匀;A356合金轮毂的抗拉强度和断后伸长率从高至低依次为T6+涂装态、T6态、铸态。  相似文献   

19.
采用不同工艺对含锶新型建筑耐候钢09MnCuPTiSr进行了正火处理,并进行了试样耐腐蚀性能和耐磨损性能的测试与分析。结果表明:随正火温度从730℃提高到910℃(正火时间3 h),或随正火时间从1 h延长到5 h(正火温度870℃),耐候钢的耐腐蚀性能和耐磨损性能均先提高后下降。在正火时间3 h时,870℃正火的09MnCuPTiSr钢的腐蚀电位比730℃正移285 m V,磨损体积减小44%。在正火温度870℃时,3 h正火的09MnCuPTiSr钢的腐蚀电位比1 h的正移134 m V,磨损体积减小32%。正火温度优选为870℃,正火时间优选为3 h。  相似文献   

20.
采用动电位极化曲线、电化学阻抗谱、X射线光电子能谱等研究了固溶处理(固溶温度范围为800~1200℃,保温时间为1 h)对06Cr23Mn22MoN高氮无镍奥氏体不锈钢耐腐蚀性能的影响。结果表明:高氮无镍奥氏体不锈钢耐腐蚀性能主要受第二相、钝化膜及晶粒尺寸的影响;固溶温度由800℃升高到1100℃,随着Cr_2N的逐渐消除,实验钢的耐腐蚀性能逐渐改善;在固溶温度为1100℃时,Cr_2N向表面富集反应生成NH_4~+和NH_3并吸附在钝化膜表面,提高了钝化膜的稳定性,实验钢的耐腐蚀性能最好;当固溶温度高于1100℃时,晶粒长大会降低表面原子活性,形成钝化膜的速度减慢,导致实验钢的耐腐蚀性能降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号