首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在Gleeble-1500D热模拟试验机上,通过高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.03P合金在应变速率为0.01~5 s-1、变形温度为600~800℃的动态再结晶行为以及组织转变进行了研究。结果表明:在应变温度为750、800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征。同时从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的热变形激活能(Q)为485.6 kJ/mol和热变形本构方程。根据动态材料模型计算并分析了该合金的热加工图,利用热加工图确定热变形的流变失稳区,并且获得了试验参数范围内热变形过程的最佳工艺参数,温度为750~800℃,应变速率范围为0.01~0.1 s-1,并利用热加工图分析了该合金不同区域的高温变性特征以及组织变化。  相似文献   

2.
新型超高强韧钛合金热变形行为研究   总被引:1,自引:1,他引:0  
采用Gleeble3800热压缩模拟试验机研究了新型超高强韧TB17钛合金775~905℃温度范围内、应变速率0.001~10 s~(-1)条件下的热变形行为。分析了该合金在热变形过程中流变应力软化特点及显微组织演变规律,建立了该合金Arrhenius型本构方程。结果表明:采用不同变形温度,TB17钛合金峰值应力对应变速率敏感程度不同,在相变温度以下变形时,峰值应力对低应变速率敏感;而在相变温度以上变形,峰值应力对高应变速率敏感。应变速率对TB17钛合金显微组织具有重要影响,合金应变速率大于0.1 s~(-1)时,以发生动态回复为主,而应变速率为0.001~0.1 s~(-1)时以发生动态再结晶为主;降低应变速率有利于动态再结晶发生,合金在应变速率0.001 s~(-1)时可获得粒度约25μm的β晶粒。变形温度对动态再结晶具有重要影响,在相变温度以下变形仅发生初生α相再结晶,而在相变温度以上变形则发生β相动态再结晶。TB17钛合金在相变点温度以下的热变形激活能为538.4 kJ/mol,在相变点温度以上的热变形激活能为397.4 kJ/mol,该合金在775~905℃热变形软化机制为晶界滑移机制。  相似文献   

3.
采用Gleeble1500热模拟机进行了热压缩试验,研究了TC18钛合金在温度700~950℃,应变速率0.001~10s-1条件下的高温压缩变形行为,并根据应力-应变曲线建立了合金的加工图.研究结果表明:合金在两相区温度变形,应力-应变曲线呈现流变软化特征;而在单相温度区和高应变速率下,合金表现出间断的屈服现象.合金适宜的加工条件为T=700~850℃,(ε)=0.01~0.001s-1与T=850~900℃,(ε)=1~10s-1.合金热加工失稳区为T=700~750℃,应变速率为0.1~10s-1区域.  相似文献   

4.
集成电路用Cu-Ni-Si-Cr合金流变应力行为研究   总被引:1,自引:0,他引:1  
在Gleeble-1500D热模拟试验机上对Cu-Ni-Si-Cr合金在应变速率为10-2、10-1、1、5 s-1、变形温度为600~800℃条件下进行流变应力行为研究.结果表明,应变速率和变形温度的变化对合金的再结晶影响较大,变形温度越高,合金越容易发生动态再结晶;应变速率越小,合金也越容易发生动态再结晶;并利用Arrhenius双曲正弦函数求得Cu-Ni-Si-Cr的热变形激活能Q为265.9 kJ/mol,从Zener-Hollomon参数的指数函数形式得到应变速率解析表达式.  相似文献   

5.
喷射成形镍基高温合金热变形特性及微观组织变化   总被引:2,自引:0,他引:2  
康福伟  孙剑飞  张国庆  李周  沈军 《金属学报》2007,43(10):1053-1058
采用Gleeble-1500D热力模拟试验机对喷射成形 热等静压制备的镍基高温合金,在变形温度1050-1140 ℃,应变速率0.01-10.0 s-1,工程应变量50%的条件下进行了热压缩实验.利用实验数据建立了合金的热加工图和热激活能图,对变形过程中组织演化进行了研究.结果表明,热等静压并没有使喷射成形高温合金晶粒尺寸明显长大.真应力-应变曲线出现了屈服降落现象;合金热加工图失稳区出现在温度区间1050-1110 ℃,应变速率0.01 s-1处;在1110-1140 ℃,应变速率1.0-10.0 s-1区间功率耗散值(η)出现最大值;在1140 ℃,应变速率1.0-10.0 s-1区间激活能出现一个小平台区.在变形温度1110-1140 ℃、应变速率1.0-10.0 s-1、变形量50%的条件下,可得到完全再结晶组织,该变形条件与热加工图中功率耗散最大值所在区间和激活能图中小平台区所在区间相对应.  相似文献   

6.
在THERMECMASTER-Z型热模拟试验机上,对锻态TB6钛合金在真应变为0.92、变形温度为800℃~1150℃、应变速率为0.001s-1~1s-1的条件下进行等温恒应变速率压缩试验,分析合金在β单相区条件下的热变形特点,并观察金相组织。结果表明,应变速率对合金流动应力的影响较显著;而变形温度对合金流动应力的影响在较高应变速率时较大,在较低应变速率时较小。动态再结晶晶粒尺寸和动态再结晶体积分数,随温度的升高而增大,随应变速率的增大而减小。从晶粒细化和动态再结晶组织均匀性考虑,当真应变为0.92时,变形温度选择在950℃~1050℃之间,应变速率选择在0.01s-1为宜。  相似文献   

7.
片层厚度对TA15合金β相区变形行为的影响   总被引:1,自引:1,他引:0  
将具有不同α片层厚度的两种转变组织的TA15合金分别在Ther mecmaster-Z型热模拟试验机上进行等温恒应变速率压缩试验,研究了温度为1000~1100℃、应变速率为0.001~10s-1时合金的热变形行为。结果表明,两种不同组织的TA15合金在β相区相同热力参数变形时,真应力-真应变曲线的形貌和真应力值基本相同,变形激活能为(170±2)kJ/mol,且微观组织特征基本相似,以β相的动态再结晶为主。但在1050℃、0.01~1s-1变形时,细片层组织的合金发生β相动态再结晶的体积分数总是略高于粗片层组织的合金,这可能与细片层组织的合金较早发生α→β相转变、且β相也较早开始再结晶有关。  相似文献   

8.
在Gleeble-1500D热模拟试验机上,对Cu-Cr0.5-Sn0.31-Zn0.15-Y0.054合金进行高温等温压缩试验。变形条件是应变速率0.01、0.1、1、5 s-1,变形温度600、700、800℃,最大变形程度为真实应变0.6。结果表明:随变形温度升高,合金的流变应力下降,随应变速率提高,流变应力增大;在变形温度为700、800℃并且应变速率较低时,合金热压缩流变应力出现了明显的峰值;从流变应力、应变速率和温度的相关性,求得了热变形激活能(Q)和流变应力方程;合金动态再结晶的显微组织强烈受到变形条件的影响;变形条件对冷却后合金的硬度和导电率产生了明显的影响。  相似文献   

9.
利用Gleeble-1500D热模拟试验机对Cu-0.8Mg合金进行热变形试验,变形温度为500~850℃、应变速率为0.001~10 s-1,研究不同试验条件下合金流变应力的变化规律,分析合金的流变应力、应变速率和变形温度之间的关系,对合金的热加工图进行研究。结果表明:合金在热变形过程中,其流变应力曲线表现出典型的加工硬化、动态回复和再结晶特征,随着变形温度的升高和应变速率的降低,其流变应力和峰值应力也随之降低;合金热变形过程中的激活能为177.88 k J/mol,构建了合金的本构方程;合金在热变形过程中的最优加工参数为:变形温度为700~800℃、应变速率为0.01~0.1 s-1。  相似文献   

10.
研究了TC11钛合金在温度800~1050℃,应变速率0.005~5s-1条件下的高温压缩变形行为,基于动态材料模型建立了热加工图,并结合变形微观组织观察确定了该合金在实验条件下的高温变形机制.结果表明:TC11钛合金在两相区低应变速率下(0.005~0.05 s-1)变形时主要发生片状组织的球化,并且球化的效果随变形温度的降低和应变速率的增加而增加.在两相区高应变速率下(0.05~5 s-1)变形时发生热加工的非稳定流动,产生剪切裂纹和剪切带等缺陷.在β相区低应变速率下(0.005~0.05 s-1)变形时发生动态再结晶,高应变速率下(0.05~5 s-1)发生动态回复,并且应变速率大于0.1 s-1时有可能发生不稳定流动现象.在变形温度为900℃左右、应变速率为0.005 s-1时,功率耗散率达到峰值,约为57%.  相似文献   

11.
初始状态对Ti600钛合金热变形的影响   总被引:1,自引:0,他引:1  
在Gleeble-1500热模拟试验机上采用等温压缩试验的方法研究了Ti600合金2种状态下的热塑性变形行为,获得了合金在温度为800~1100℃,变形速率为0.001~10s-1范围内的流变应力数据,并计算了合金2种状态条件下的变形激活能Q。结果表明:不同的初始状态对合金的热变形行为有影响,经过热加工处理后的合金变形激活能比铸态条件下的变形激活能高;合金在2种状态下的变形激活能分别为:在(α+β)相区为475和644kJ·mol-1,在β区为101和239kJ·mol-1。在(α+β)相区动态再结晶是合金的主要软化机制,而在β区软化机制则以动态回复为主。  相似文献   

12.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.4Cr合金在应变速率为0.01~5s-1、变形温度为600~800℃、最大变形程度为60%条件下的流变应力行为进行了研究。结果表明:随变形温度升高,合金的流变应力下降,随应变速率提高,流变应力增大;在应变温度为700,800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征;从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)和流变应力方程;合金动态再结晶的显微组织强烈受到变形温度的影响。  相似文献   

13.
在变形温度为1050~1180℃、应变速率为0.1~10s-1、最大真应变为0.7的条件下,采用Gleeble-3500热模拟试验机研究GH4199合金的热压缩变形行为,得到该合金的热变形激活能及热变形方程式,建立合金的热加工图,并通过组织观察对其热加工图进行解释。结果表明:在实验条件下,GH4199合金均表现出动态再结晶特征;变形温度和应变速率对合金流变应力及相应峰值应变大小的影响显著,流变应力及峰值应变均随着变形温度的降低和应变速率的增加而增大;在真应变为0.1~0.7时合金的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率逐渐升高;在应变速率为0.01s-1时,能量消耗效率达到峰值,约为41%。  相似文献   

14.
利用Gleeble-1500D热模拟试验机对Cu-Cr-Zr和Cu-Cr-Zr-Y合金,进行高温等温压缩试验,研究了在变形温度为650~850℃、应变速率为0.001~10 s-1条件下两种合金的流变应力的变化规律,测定了真应力一应变曲线,从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和本构方程,并利用光学显微镜分析了合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:稀土元素Y的加入细化了微观组织,提高了Cu-Cr-Zr合金的动态再结晶体积分数,并且大幅降低了合金的热变形激活能Q,改善了其热加工性能。  相似文献   

15.
铸态Mg-7Gd-5Y-1.2Nd—Zr镁合金热变形行为研究   总被引:2,自引:1,他引:1  
针对Mg-7Gd-5Y-1.2Nd-Zr镁合金,研究了其铸态显微组织以及在Gleeble-1500D热模拟机上单向压缩的力学行为,其应变速率为2×10-3~1 s-1,变形温度为573~723 K,压下量为60%.铸态Mg-7Gd-5Y-1.2Nd-Zr合金组织由α-Mg基体和网状的共晶构成;变形温度和应变速率对合金的峰值应力有明显的影响,在相同变形温度条件下,峰值应力随应变速率的增加而升高;在相同的应变速率条件下,峰值应力随变形温度的升高而降低;高温条件下的共晶组织的软化也是合金变形抗力下降的重要原因;应变速率为10-1 s-1 时,合金不连续动态再结晶最为明显,合金易于失效;同时计算出了平均热变形激活能Q为243.5 kJ/mol和应力指数n为4.197 2,分析得出变形激活能直接受到变形温度的影响,间接受到应变速率的影响.  相似文献   

16.
采用热模拟压缩试验研究了Ti600合金在变形温度为800~1100℃、应变速率为0.001~10s-1范围内应力-应变曲线的变化规律。研究结果表明:Ti600高温钛合金热变形的流变应力随温度的升高和应变速率的降低而减小;随着应变的增大,合金的真应力-真应变曲线在经历了明显的加工硬化阶段后达到最大值,然后渐渐出现流变“软化”现象。以经典的双曲正弦形式的模型为基础建立了Ti600合金热变形的本构方程,同时也通过对数据回归处理确定了合金不同温度下的应力指数n、应变激活能Q等数值。  相似文献   

17.
Ti-1300合金的热变形行为研究   总被引:3,自引:1,他引:2  
采用Gleeble-1500型热模拟试验机对Ti-1300近β钛合金进行了等温恒应变速率压缩试验.变形温度范围为:920~1010℃,应变速率范围为:0.01~10 s-1,最大变形量为80%.根据试验数据建立了Ti-1300合金高温热变形行为的流变应力模型,得出该合金的变形激活能为177.59 kJ/mol.结合样品的显微组织分析可知,该合金在低应变速率下发生了动态再结晶,且随着温度的升高,再结晶晶粒呈现长大的趋势:在高应变速率下以动态回复为主.结果表明,为获得细小的再结晶组织,Ti-1300钛合金宜在相变点以上50~150℃的温度范围内采用较低的变形速率进行锻造.  相似文献   

18.
在Gleeble-1500热模拟试验机上,当应变速率为0.001~10 s-1、变形温度为700~900℃时,采用高温压缩试验对Ti-55531钛合金热压缩变形中流变应力行为进行研究。研究结果表明,两相区变形时,曲线呈动态再结晶型,单相区变形时,曲线呈动态回复型。流变应力随着变形温度的升高而降低,随应变速率的提高而增大。采用双曲正弦模型确定该合金的变形激活能,两相区变形激活能为407.75 k J·mol-1,单相区变形的形变激活能为157.97 k J·mol-1,建立了两相区和单相区变形的本构方程。误差分析表明,流动应力计算值与试验值之间的相对误差小于10%,所建立的本构关系能比较精确地描述Ti-55531钛合金热加工过程中的流动行为。  相似文献   

19.
采用Gleeble-1500D热模拟试验机,对Cu-Ni-Si合金在变形温度为600~800℃、应变速率为0.01~5.00 s-1条件下,分析了合金在高温变形时的流变应力与应变速率及变形温度之间的关系,在热压缩过程中组织的变化.结果表明,应变速率和变形温度的变化对合金的再结晶影响较大,变形温度越高,合金越容易发生动态再结晶,应变速率越小,合金也越容易发生动态再结晶;在同一应变速率下合金动态再结晶的显微组织受到变形温度的影响;利用Arrhenius双曲正弦函数求得Cu-Ni-Si合金热变形激活能为245.4 kJ·mol-1.  相似文献   

20.
2205双相不锈钢高温变形行为及微观组织的研究   总被引:1,自引:0,他引:1  
利用热模拟试验机Thermecmastor-E进行了950~1200℃,应变速率0.1~10 s-1、应变量10%~60%条件下2205双相不锈钢的高温压缩试验,并观察了变形组织。根据测定的真应力-真应变曲线分析了不同应变、温度条件下的热变形激活能Q及其变形机制的变化。结果表明,随应变量的增加,试验钢的表观应力指数n和热变形激活能Q随之增加;热变形机制逐渐由动态回复过渡到动态再结晶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号