首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 450 毫秒
1.
目的 研究NbC颗粒的加入量对H13钢表面激光熔覆NbC/Ni60复合涂层的组织、硬度和耐磨性的影响。方法 将Ni60合金粉末与NbC碳化物粉末球磨混合,采用激光熔覆技术,在H13钢基体表面制备不同NbC含量(质量分数分别为0%、10%、20%、30%)增强的NbC/Ni60合金复合涂层。采用电子扫描显微镜(SEM)、X射线衍射仪对复合涂层的微观组织和物相进行分析。借助显微硬度计,研究复合涂层的截面显微硬度分布规律。采用高温摩擦磨损试验机测试复合涂层在真空400℃下的摩擦磨损性能。结果 在激光熔覆NbC/Ni60复合涂层中,物相主要由γ-(Ni, Fe)固溶体、Ni2Si、CrB、Cr23C6、NbC组成;熔覆层以胞晶和枝晶为主,NbC含量对复合熔覆层组织及形态具有显著影响,加入少量NbC可使熔覆层组织细化;在NbC的质量分数为20%时,大量弥散的Nb C颗粒在枝晶间呈聚集趋势;在NbC的质量分数为30%时,熔覆层中NbC相呈现块状、花瓣状形貌。NbC/Ni60复合涂层的硬度显著高于H13钢基体,随着NbC含量的增加,N...  相似文献   

2.
通过对激光熔覆技术在镍基高温合金GH864表面制备NbC增强Ni3Si复合涂层。提出一种对激光熔覆金相组织定量分析的数字图像处理方法,对涂层显微组织进行定向金相研究。以Matlab软件为基础,采用数字图像处理中的灰度处理、平滑滤波、边缘锐化处理、阈值分割、边缘检测等对金相图进行处理,利用ImageJ软件为工具,计算出在添加不同含量的[Nb+C]状态下,NbC/Ni3Si复合涂层中增强相NbC所占比例。结果表明,该数字图像处理方法可实现对激光熔覆显微组织的金相图片的处理和定量分析,在NbC/Ni3Si基复合涂层的显微组织中,添加8%的[Nb+C]时NbC占3.193%,15%的[Nb+C]时NbC占5.350%,20%的[Nb+C]时NbC占5.857%。  相似文献   

3.
目的 在钛合金表面制备陶瓷相增强复合耐磨涂层。方法 采用等离子弧熔覆技术,在Ti6Al4V钛合金表面制备了原位自生TiB2、TiC、CrB陶瓷相增强镍基耐磨涂层。采用X射线衍射仪、扫描电镜、能谱仪检测了涂层的物相组成、组织组织以及微区化学成分,采用显微硬度计测试了涂层的硬度。结果 涂层靠近熔合线区域由Ni-Ti树枝晶及枝晶间的共晶组成,在涂层的中上部,大量原位增强相分布于镍基固溶体基体之中。在熔覆过程中,钛合金基材中的Ti元素同熔覆粉末中的B、C元素发生原位冶金反应形成TiB2、TiC增强相,CrB增强相为Ni基熔覆粉末中Cr、B元素反应形成,增强相的形态由各自的晶体结构及熔池凝固热力学与动力学条件决定。涂层的显微硬度得到显著提高,最高达1037HV0.2。结论 采用等离子弧熔覆技术,利用熔池内Ni-Cr-Ti-B-C合金体系的原位冶金反应,可以在钛合金表面制备原位自生TiB2、TiC、CrB增强镍基复合耐磨涂层。同Ti6Al4V基材相比,由于涂层具有大量增强相分布于镍基固溶体的组织特征,其显微硬度得到了显著提高。  相似文献   

4.
激光熔覆Ni/SiC金属陶瓷涂层组织与耐磨性能   总被引:4,自引:0,他引:4  
采用激光熔覆技术,在45钢表面对不同含量SiC(质量分数)陶瓷粉末镍基自熔性粉末进行激光熔覆,得到Ni基SiC合金涂层。对熔覆层横断面进行了显微硬度测量和显微组织分析,对各种SiC含量的熔覆层试样进行了摩擦磨损试验。结果表明,添加SiC的镍基合金涂层能够提高熔覆层的耐磨性和硬度。  相似文献   

5.
利用激光熔覆技术分别在W1813N无磁性不锈钢表面制备高硬度镍基自熔性合金Ni60(60HRC)涂层和低硬度Ni25基WC-12Co复合涂层。利用扫描电子显微镜(SEM)、能谱(EDS)、X射线衍射仪(XRD)和台阶仪,分析激光熔覆制备Ni60涂层和WC-12Co/Ni25复合涂层的显微组织、相组成和磨损行为。利用显微硬度、摩擦系数、磨痕轮廓对比两种涂层的耐磨性和磨损机制。结果表明,Ni60涂层显微组织主要为树枝晶和等轴晶,且Cr23C6, Cr2B等强化相弥散分布在?-Ni和FeNi固溶体晶界;而WC-12Co/Ni25复合涂层中WC-12Co颗粒弥散镶嵌于低硬度Ni25基质,复合涂层中WC-12Co颗粒体积比达到32.5%。复合涂层中最大和最小显微硬度差异达到648 HV。尽管两种涂层的摩擦系数相近,但复合涂层的磨损体积仅为Ni60涂层的10%,Ni60涂层表面的磨痕特征为犁沟状和塑性粘附,复合涂层磨痕表面为WC碎屑和塑性粘附,因此Ni60涂层的磨损失效机制为磨粒磨损和粘着磨损,而复合涂层磨损机制为粘着磨损,以上结果表明WC-12Co/Ni25复合涂层具有更好的耐磨性。  相似文献   

6.
以Ta2O5、Nb2O5、C和Ni60混合粉末为原料采用激光熔覆技术,在Q235钢表面制备原位生成TaC-NbC复合颗粒增强镍基复合涂层。使用X射线衍射、扫描电镜和EDS能谱,对熔覆层的显微组织和物相构成进行分析。结果表明,在适当工艺条件下,原位生成TaC-NbC复合颗粒增强镍基涂层形貌良好,涂层与基材呈冶金结合。硬度测试和摩擦磨损试验表明,熔覆层具有高的硬度(平均硬度1200 HV0.3)和良好的耐磨性,与纯Ni60熔覆层相比,其摩擦质量损失仅为纯Ni60熔覆层的31%。分析认为,熔覆层硬度和耐磨性提高的原因在于其中形成大量原位生成的TaC-NbC复合颗粒增强相,且均匀分布于基体。  相似文献   

7.
采用半导体激光器,使用预置粉末的方式在Q235钢表面制备了Ni基WC复合涂层。使用扫描电镜、金相显微镜、显微硬度仪等分析了激光功率对熔覆层的宏观形貌、显微组织和性能的影响。结果表明:随着激光功率的提高,熔覆层的宽度、堆积高度和基底熔深均增大;熔覆过程中WC颗粒与Ni基合金之间发生了原子间的扩散,形成了冶金结合,生成了大量的富W、富Cr的碳化物硬质相,使涂层的硬度得到了很大的提高;随着功率的增大熔覆层的组织变的更加细小致密,形成大量的呈集群生长的树枝晶;熔覆层的显微硬度是基体的3~5倍。  相似文献   

8.
在GH4169表面通过激光熔覆制备不同成分配比的Mo Si2-Ni Cr Si B复合涂层,利用扫描电镜对熔覆层的微观组织进行观察,测试了熔覆层的显微硬度及高温抗氧化性能。结果表明:添加不同比例的镍基合粉末制备的Mo Si2-Ni Cr Si B复合涂层试样与基体形成良好的冶金结合,无明显的裂纹、空洞,且随镍基合金粉末的添加,熔覆层组织与基体的结合越来越紧密,树枝晶状的硅钼相与合金相交错分布。添加不同比例镍基合金粉末时复合涂层的显微硬度比基体都有所提高,最高可达540 HV0.2,是基体硬度的1.2倍,随镍基合金粉末的增多,复合涂层硬度降低,最多会降低11%。添加10%的镍基合金粉末时试样的高温抗氧化性能最好。  相似文献   

9.
镍基钎料对45#钢激光熔覆镍基WC合金熔覆层缺陷的影响   总被引:2,自引:2,他引:0  
目的改善Ni60A+WC合金粉末激光熔覆中裂纹和气孔等缺陷性能。方法在Ni60A+WC合金粉末中添加膏状镍基钎料(BNi-1a)改善激光熔覆层的裂纹和气孔缺陷。使用Rofin FL020光纤激光器,在1 kW功率、扫描速度为4 mm/s、光斑直径约为2 mm的条件下,对经过烘干的预涂覆合金熔覆层进行激光加工处理。通过显微硬度测试评价熔覆层的硬度,通过扫描电子显微镜和X射线衍射仪对熔覆层形貌、相组织进行分析,并通过UMT和表面形貌仪对熔覆层的摩擦系数和耐磨性进行评估。结果在Ni60A+WC合金粉末中添加膏状镍基钎料(BNi-1a),优化了Cr和C合金相的组成,使熔覆层的裂纹和气孔等缺陷明显减低。添加膏状镍基钎料的熔覆层的摩擦系数约为0.45,熔覆层的摩擦系数大约降低了18%。同时熔覆层的耐磨性也有所提高,未添加膏状镍基钎料的熔覆层磨痕横截面积约为0.70×10~(-3) mm~2,而添加膏状镍基钎料的熔覆层横截面积约为0.50×10~(-3) mm。结论镍基钎料(BNi-1a)的加入可以有效减少熔覆层的裂纹和气孔等缺陷,同时提高熔覆层的耐磨性,但是使熔覆层的硬度有一定的降低。  相似文献   

10.
目的 通过高速激光熔覆技术改善高压柱塞镍基合金涂层的组织,并提高涂层的耐磨性能。方法 分别采用常规激光熔覆(P=1.8 kW,vs=500 mm/min)和高速激光熔覆(P=1.8 kW,vs=7000 mm/min),在高压柱塞45#钢基材上制备了SD-Ni45耐磨涂层,分别测试了两种涂层的稀释率、微观结构、硬度,并通过可控气氛微型摩擦磨损试验仪和扫描电镜,对熔覆层的耐磨性进行了分析。结果 高速激光熔覆层的稀释率约为常规激光熔覆层的68%。高速激光熔覆层的物相与常规激光熔覆层的物相基本相同,并无新的物相析出,主要包括γ-(Ni,Fe)固溶体、Cr-Ni-Fe固溶体、Cr23C6以及少量的WC等强化相,但高速激光熔覆层的整体组织更加细小致密,硬质相颗粒分布更为均匀。高速激光熔覆层与常规激光熔覆层的平均显微硬度分别为600HV0.1、460HV0.1,高速激光熔覆层与常规激光熔覆层的磨痕宽度分别为210、315 μm,磨损量分别为(7.4±0.8)、(4.4±0.6) mg,高速激光熔覆层的耐磨性相对于常规激光熔覆层提高了约1.7倍。结论 高速激光熔覆技术可以有效地改善常规激光熔覆层裂纹敏感性大、稀释率较高、涂层较厚等缺陷,高速激光熔覆层的硬度和耐磨性较普通激光熔覆层有所提高。  相似文献   

11.
钛合金表面激光熔覆 h-BN 固体润滑涂层   总被引:6,自引:6,他引:0  
王培  叶源盛 《表面技术》2015,44(8):44-48,75
目的优化钛合金激光熔覆固体润滑涂层的熔覆工艺参数,提高钛合金表面耐磨性能。方法采用Nd∶YAG激光器,分别在高功率和低功率条件下,在TC4钛合金表面制备h-BN固体自润滑涂层。观察分析熔覆陶瓷层的宏观形貌、物相组成、显微组织和硬度,采用摩擦磨损试验仪对熔覆层的摩擦学性能进行研究。结果低激光功率下,熔覆材料上浮流失严重,熔覆层的相成分主要是Ti N,Ti B,Ti B2等硬质相,硬度较高,存在裂纹。高激光功率下,基材的熔化稀释较好地抑制了润滑相h-BN的上浮,减少了溅射损失,发生了包晶反应,生成了单质金属Ti,熔覆层硬度低,但摩擦磨损试验表明,涂层中润滑相h-BN含量的增加使得形成了更好的润滑膜,降低了摩擦系数。结论在输出电流400 A,脉宽5 ms,频率12Hz,扫描速度120 mm/min,搭接率50%~60%的条件下进行激光熔覆,所得熔覆层的表面状态平整,耐摩擦性能最好。  相似文献   

12.
NiCrBSi coatings with different Nb additions have been prepared by laser cladding. The microstructure, phase composition, hardness, and wear resistance of the coatings were studied by scanning electron microscopy (SEM), electron probe microanalyser (EPMA), X-ray diffraction (XRD), microhardness tester and M-200 wear tester. The results show that the phases in the NiCrBSi coating without Nb addition include γ-Ni, Cr23C6, Cr7C3, Ni3B, Ni3Si2 and CrB. The NbC phase appears in coatings after the addition of Nb element. When the addition of Nb is 2?wt-%, the NbC particles with a size of about 1.2?μm were found in the coating, and the amount of NbC is about 1.8?vol.-%. With the increase of Nb addition, the size and amount of NbC in the coatings also increased. When the addition of Nb is 6?wt-%, the size of NbC is about 2.3–6.1?μm and the morphology of NbC changed from particle to quadrangular and petaloid shaped. In addition, when the addition of Nb is 2?wt-%, the hardness and wear resistance of the coating are the best, and the wear resistance of the coating is 104% higher than that without Nb addition.  相似文献   

13.
使用脉冲Nd:YAG激光器在Cr12MoV模具钢表面熔覆了Ni20Cr和Ni60A多层Ni基合金耐磨涂层,并使用X射线衍射仪、扫描电镜及能谱仪分析了涂层的物相和显微组织。同时运用显微维氏硬度计以及高速往复摩擦磨损试验机对比分析了涂层与基体的硬度及耐磨性。结果表明,采用Ni20Cr作为打底层的多层Ni基合金涂层,能有效改善涂层与基体的冶金结合,大大减少涂层中的裂纹、气孔等缺陷。涂层表面物相主要为g-(Fe, Ni)、FeNi3、BNi3、Cr3C2以及Ni-Cr-Fe;涂层底部至表面的组织为胞状树枝晶、柱状树枝晶、择优生长树枝晶以及等轴树枝晶。Ni60A涂层大大提高了Cr12MoV模具钢的表面硬度,涂层表面显微硬度最高可达到1000 HV0.2,是基体的1.6倍。Ni60A涂层耐磨损性能明显优于基体,较基体提高了2.0~3.3倍。在Cr12MoV模具钢表面激光熔覆多层Ni基合金涂层后,形成了Cr3C2、Ni-Cr-Fe等硬质相,可有效提高其表面的硬度和耐磨性,起到降低模具在使用过程中因摩擦磨损而报废的概率,从而进一步延长模具的使用寿命。  相似文献   

14.
Ti811合金表面TC4激光熔覆层微观组织及性能   总被引:1,自引:1,他引:0       下载免费PDF全文
按照CFM56系列发动机维修手册的建议,在Ti811合金表面采用同步送粉激光熔覆技术,以TC4合金粉末为原料,制备出均匀致密、无气孔和裂纹等缺陷的激光熔覆层. 分析涂层的宏观形貌、微观组织结构和组织相变过程,测试涂层的显微硬度和摩擦磨损性能. 结果表明,扫描电镜下涂层微观组织呈现魏氏体结构特征,涂层显微硬度相比基材有所提高,主要原因是涂层中的针状马氏体α'有一定的强化作用;涂层中弥散分布的纳米颗粒Ti3Al的沉淀强化和弥散强化等作用也在一定程度上提高了涂层的显微硬度;熔覆层的磨损机制为磨粒磨损和黏着磨损的复合磨损机制.  相似文献   

15.
目的通过激光熔覆作用,使钛元素与铜基合金生成耐磨的第二相组织,提升铜基合金表面在海水环境中的耐磨性能。方法采用激光熔覆技术在ZQAl9442镍铝青铜合金表面制备均匀的钛元素改性铜基涂层。采用SEM、EDS、XRD、摩擦磨损试验机等检测仪器,对该改性涂层的显微组织、元素分布、硬度以及在大气与海水环境中的摩擦性能进行分析。结果改性涂层中,因钛元素添加生成了Al Cu2Ti相,使得改性涂层的表面硬度在第二相析出强化的作用下得以提升,显微硬度可达(310±10)HV0.3,相比同质修复层,提升了14.8%。在海水环境中,改性涂层的摩擦系数远低于同质修复层。改性涂层在大气环境中的磨损机制为氧化磨损、粘着磨损及磨粒磨损,在海水环境中的磨损机制为磨粒磨损。结论通过在ZQAl9442铜合金表面进行激光熔覆,得到了兼具高硬度、高耐磨性和抗海水环境摩擦的钛元素改性铜基涂层,在一定程度上提升了镍铝青铜合金在海水环境中的服役寿命。  相似文献   

16.
通过氩弧熔覆技术在纯铜表面制备TiB2增强 Ni 基复合涂层,以改善其耐磨性能. 将钛粉、硼粉和镍粉在球磨机中充分混合,采用氩弧熔覆技术将纯铜表面预置粉末熔化制备出陶瓷颗粒增强镍基熔覆层. 采用X射线衍射仪、扫描电子显微镜、透射电子显微镜分析涂层的物相及涂层中陶瓷颗粒相的组成、分布及结构,利用显微硬度仪和摩擦磨损试验机测试涂层的显微硬度和耐磨性能. 结果表明,熔覆层物相主要包括γ(Ni, Cu)和TiB2;陶瓷颗粒增强相弥散分布于熔覆层中,其中颗粒相TiB2以六边形存在,熔覆层内部与基体界面处均无缺陷产生;熔覆涂层具有较高的显微硬度,当(Ti+B)质量分数为10%时,涂层显微硬度高达781.3 HV,与纯铜基体对比,熔覆层显微硬度提高约11.7倍;在相同磨损条件下,随(Ti+B)质量分数的增加,熔覆涂层的摩擦系数及磨损失重先减小后增大;氩弧熔覆原位自生TiB2陶瓷颗粒增强镍基熔覆层可显著提高纯铜表面的耐磨性能.  相似文献   

17.
TC4钛合金表面激光熔覆掺Y2O3复合涂层的显微组织和性能   总被引:2,自引:2,他引:0  
目的提高钛合金表面的耐磨性能。方法在TiB_2:TiC=1:3的粉末配比下,添加不同质量分数Y_2O_3稀土氧化物,制备成膏状混合粉末。采用5 k W横流CO_2激光器,在TC4钛合金表面激光熔覆掺Y_2O_3的TiB_2和TiC粉末,制备耐磨性复合涂层。通过扫描电子显微镜(SEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)对激光熔覆层的微观形貌和组织成分进行了分析;用显微维氏硬度计对熔覆层的显微硬度进行了测量;用万能摩擦磨损试验机对熔覆层的耐磨性能进行了测试。结果添加4%Y_2O_3后,熔覆层中部组织明显细化,结合区由致密组织结构转变为晶须网状结构;熔覆层的最高显微硬度为1404.6HV0.2,是基体的3.7倍;熔覆层的磨损量减少了66.67%,且其摩擦系数有明显的降低。结论添加4%Y_2O_3对TC4钛合金表面激光熔覆TiB/TiC复合熔覆层耐磨性能有显著的提高。  相似文献   

18.
为了提高TC4合金的耐磨减摩性,利用激光熔覆技术在TC4合金表面激光熔覆TC4+h-BN混合粉末制备钛基金属陶瓷复合涂层,利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱分析仪(EDS)等手段对熔覆层宏观形貌和微观组织进行观察,利用显微硬度计对熔覆层、热影响区、基体的硬度进行测试,通过摩擦磨损试验机对熔覆层和基体的摩擦因数进行测量,利用电子精密天平对熔覆层和基体的磨损量进行检测。结果表明:熔覆层主要由杆状相TiB、三元共晶组织(Ti-B-N)和基底α-Ti组成。熔覆层硬度分布在1000~1200 HV0.5之间,熔覆层磨损机理为轻微的磨粒磨损,TC4基体为严重的磨粒磨损。熔覆层摩擦因数较基体下降了0.04,磨损量较基体下降了7 mg,熔覆层的耐磨减摩性能较基体有所提高。  相似文献   

19.
杨广峰  郜峰  崔静 《表面技术》2023,52(1):346-353
目的 探究超快激光功率对TC4钛合金表面熔覆TC4粉末复合涂层组织及其性能的影响。方法 用超快激光器在TC4基体上制备TC4合金熔覆层。进行了1 000、1 500、2 000 W 3组功率参数的试验,利用扫描电子显微镜、X射线衍射仪、EDS能谱仪、电化学工作站、显微硬度计、摩擦磨损仪,对熔覆层的显微组织、物相结构、耐腐蚀及力学性能进行分析测试。结果 试件的熔覆质量受功率参数的影响,功率较低会导致熔覆层较浅,而功率过高又会导致基体因过烧损坏。3组功率参数下组织分别以细小颗粒胞状晶、细针状树枝晶、粗大树枝晶为主,随着功率的增大,组织开展方向越发规律,同时组织数量和密度都呈下降趋势。激光功率对熔覆层的元素变化影响很小,形成了TiN、Ti2N等硬质相,涂层硬度和抗磨损性能显著增强,硬度最高可达840.5HV。功率为1 000~2 000 W时,磨损性能先增加后降低,功率为1 500 W时抗磨损性能最佳,功率为2 000 W时因功率过高导致抗磨损性能反而比基体更低。同时功率为1 500 W时也具有最高的腐蚀电位和最低的腐蚀电流密度,涂层的耐腐性能最强。结论 合适的扫描功率参数具有最好的熔覆层质量、最佳的硬度和耐蚀耐磨性能。激光功率为1 000~2 000 W时,功率参数P=1 500 W时,熔覆层的综合性能最好。  相似文献   

20.
目的改善传统激光熔覆工艺制备的涂层组织粗大,物相分布不均匀,易出现气孔裂纹等缺陷。方法采用松香酒精溶液作为粘接剂,将涂层材料(镍包碳化钨粉末)预置于Q235钢基体表面,选用最优激光参数(功率P=1600 W、光斑直径d=5 mm、扫描速度ν=4 mm/s),并在高频微振辅助工艺下进行熔覆试验,最终制备出镍基碳化钨增强涂层。分别使用扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)、显微硬度仪及万能摩擦磨损试验机(UMT)对涂层的显微组织、元素成分及物相、显微硬度和耐磨性能进行测量分析。结果在高频微振产生的激振力作用下,涂层组织由粗大的树枝晶向等轴晶及细小枝晶转变,物相成分主要为γ-Ni(Fe)、Ni3Fe、WC、M(23)C6型化合物等,深色硬质相分布均匀,气孔裂纹等缺陷基本消失,涂层磨损机制主要为轻微磨粒磨损。与无高频微振辅助的涂层相比,显微硬度提高了17%,摩擦系数减小了29%,耐磨性提高了49%。结论利用高频微振辅助激光熔覆工艺,可使制备出的涂层质量显著改善,微观组织更加致密,成分分布更加均匀,细晶强化和弥散强化效果增强,硬度、耐磨性等力学性能得到明显提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号