首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 23 毫秒
1.
以LA91双相镁锂合金板材为研究对象,在不同温度(423、473、523、573和623 K)、不同应变速率(5×10-4、1.5×10~(-3)、4.5×10~(-3)和1.35×10-2s~(-1))条件下进行超塑性拉伸试验。结合真应力-应变曲线分析LA91超塑性变形行为。结果表明,提高变形温度或降低应变速率,LA91的伸长率增大,流变峰值应力减小,从250 MPa降至30 MPa。其中,在初始应变速率为1.5×10~(-3)s~(-1)、变形温度为623 K条件下伸长率最大为187.04%,具有明显的超塑性特征。基于超塑性本构方程得LA91的应变速率敏感指数为0.41,变形激活能为92.93 k J·mol~(-1),其超塑性变形机制为晶界扩散控制的晶界滑动。研究结果为LA91双相镁锂合金板材的塑性加工与应用提供了科学依据。  相似文献   

2.
研究了真空环境中TA32钛合金板材在温度950℃、应变速率5. 32×10~(-4)~2. 08×10~(-2)s~(-1)条件下的超塑性变形行为。结果表明,在不同应变速率条件下,合金的流变应力曲线特征和显微组织演变显著不同。在应变速率较低(5. 32×10~(-4)~3. 33×10~(-3)s~(-1))条件下,拉伸真应力-真应变曲线呈传统超塑变形的稳态流动特征,变形后的合金中初生α相晶粒尺寸较大;在高应变速率(8. 31×10~(-3)s~(-1)~2. 08×10~(-2)s~(-1))条件下,拉伸真应力-真应变曲线中流变应力增大到峰值后快速单调递减直至试样断裂,合金变形过程中初生α相发生动态再结晶,晶粒尺寸较低应变速率条件下显著细化。950℃时,TA32钛合金板材均具有超塑性变形能力,超塑性延伸率在145%~519%之间;当应变速率为5. 32×10~(-4)s~(-1)时,具有最佳的超塑性,拉伸延伸率可达519%。断裂区形貌分析发现,TA32钛合金板材的超塑性断裂模式为空洞聚集-连接-长大型断裂。  相似文献   

3.
采用Thermecmaster-Z型热加工模拟试验机对Ti60合金试样进行等温恒应变速率压缩试验,研究该合金在变形温度为600~950℃,应变速率为0.001~10s~(-1)条件下的流变应力行为,并构建人工神经网络(ANN)本构模型。结果表明,Ti60合金的流变应力随变形温度的升高和应变速率的下降而减小。在不同的变形条件下,Ti60合金的流变应力-应变曲线分别呈现流动稳态型和流动软化型两种特征。基于ANN所建立的本构模型预测精度高,流变应力试验值与预测值之间的相对误差在±5%以内,平均相对误差为1.82%,且相关系数趋近于1,能准确地描述并预测Ti60合金的流变应力行为。  相似文献   

4.
研究了TB8合金在不同变形条件下的超塑性及其显微组织。结果表明,变形温度为690~840℃、应变速率为1.0×10~(-4)~1.0×10~(-3)s~(-1)时,TB8钛合金均具有超塑性。750℃、1.0×10~(-4)s~(-1)拉伸时,合金塑性最佳,伸长率为524.9%。变形过程中,变形软化和加工硬化相互抵消,表现为传统的超塑性变形稳态流动特征。变形温度、应变速率和变形程度对合金的超塑性、显微组织均有明显影响。应变速率越低,等轴β相晶粒尺寸越大。拉伸温度升高,β相晶粒尺寸增大,α相颗粒逐渐被溶解,β相饱和化,但仍能保持一定的等轴度。随着变形程度增大,β相晶界和基体弥散析出的α相越多,细小、弥散分布的α相可以抑制晶粒的过分长大,使合金塑性得到改善。  相似文献   

5.
针对环轧态Ti40钛合金,进行等温恒应变速率高温压缩变形实验,研究合金在应变速率0. 001~1 s~(-1),温度950~1100℃范围变形过程中流变应力和微观组织演变行为,并通过流变应力曲线拟合计算建立合金该变形条件下的流变应力本构方程。实验结果表明:流变应力随着应变量的增加急速升高而后突降,同时流变应力随着应变速率增大而增大,这与位错密度增殖和运动密切相关;当合金变形温度一定时,随着应变速率变小,内部组织发生动态再结晶,平均晶粒尺寸得到细化;但当应变速率一定时,合金在较低应变速率(0. 001 s~(-1))变形时,需适当控制变形温度,才能得到晶粒更细小的均匀组织。  相似文献   

6.
在温度450~520℃和1.67×10~(-3)~1.00×10~(-1)s~(-1)。初始应变速率条件下对Al-Mg-Sc-Zr合金冷轧板材进行拉伸实验,研究该合金的超塑性流变行为,探讨其超塑性变形机理。结果表明:随着变形温度的升高,伸长率先增加后减小,在500℃和初始应变速率6.67×10~(-3)s~(-1)条件下获得的最大伸长率为740%。合金的应变速率敏感因子为0.40,激活能为101 kJ/mol;在超塑性变形过程中,合金组织发生明显的动态再结晶,使原始纤维状晶粒等轴化;Al_3(Sc,Zr)粒子可有效钉扎晶界,抑制晶粒长大;超塑性变形过程的主要变形机制为晶界滑移,协调机制为晶界扩散控制的位错蠕变。  相似文献   

7.
通过电子万能试验机对具有粗大晶粒的β型WSTi3515S阻燃钛合金进行了超塑性拉伸试验,分析了热力学参数对超塑性能及力学行为的影响,建立了该合金超塑性本构关系。结果表明:WSTi3515S阻燃钛合金可在较宽的温度范围及应变速率区间内(800~920 ℃,0.000 5~0.01 s-1)实现超塑性;且在高温低应变速率条件下超塑性能良好,最大延伸率可达556%。与细晶超塑性不同,WSTi3515S合金在超塑性拉伸过程中,稳态变形阶段很短甚至不出现,变形主要集中在准稳态变形阶段,且准稳态变形阶段越长,获得延伸率越大。基于Arrhenius方程建立的本构方程精度不高,而由逐步回归法构建的本构方程误差值基本在5%以内。  相似文献   

8.
通过高温拉伸试验研究了Ti2AlNb合金在温度为900~1000℃、应变速率为0.0001~0.01 s~(-1)下变形温度及应变速率对材料伸长率和抗拉强度的影响,并基于试验结果研究了材料应变速率敏感性指数随温度及应变速率的变化趋势。结果表明:Ti2AlNb合金应变速率敏感性指数随温度及应变速率的变化呈先升高后下降的趋势,在温度为975℃、应变速率为0.0005 s~(-1)条件下达到峰值,随后快速下降。通过扩展Rossard提出的粘塑性关系式,修正了基于Backoften方程所建立的应力-应变本构关系式,建立了材料在不同温度下的热变形本构方程。试验结果与模型计算结果基本吻合,可用于表征Ti2AlNb合金在高温下的热变形行为。  相似文献   

9.
在Gleeble-3500型热模拟试验机上研究了TiAl合金在变形温度为1 273~1 423K和应变速率为0.001~1s~(-1)条件下的热变形行为。采用多元线性回归拟合材料常数与应变的函数关系,构建了基于应变量耦合的本构方程。结果表明,以应变的6次多项式拟合得到的本构模型能较好预测真应力-应变曲线,且相对误差在5%以内。  相似文献   

10.
通过Ti1023合金等温压缩试验,得到不同高温变形条件下真应力-应变曲线和热加工图。通过加工硬化和动态软化效应分析了变形参数对Ti1023合金应力-应变曲线形态和峰值应力的影响。结果表明:在中低温区域和大应变速率条件下,变形参数对流动应力影响较大,高温区域和小应变速率对流动应力影响较小。通过对Ti1023合金热加工图的分析,发现合金的热变形能量分配主要受应变速率的影响。热加工图中主要存在两个变形失稳区和一个临界失稳区,失稳机制主要包括局部塑性流动和绝热剪切等。Ti1023钛合金的较优锻造区间为:变形温度760~780℃、应变速率5×10~(-4)~10~(-1)s~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号