首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳米压痕法测量超细晶工业纯钛室温蠕变速率敏感指数   总被引:1,自引:0,他引:1  
室温下,采用复合细化(ECAP+冷轧+旋锻)工艺,制备出平均晶粒尺寸约为180 nm的超细晶工业纯钛,其抗拉强度高达870 MPa。利用纳米压痕仪对超细晶工业纯钛以恒加载速率/载荷的方式进行测试实验,通过测定压头保载阶段的压入位移和材料的硬度值计算得出室温蠕变速率敏感指数m值。结果表明:超细晶工业纯钛由于晶粒明显细化,晶界数量增多,晶界长度增加,位错增殖,在室温下表现出优良的抗蠕变能力,适合在压力环境下长期工作,其蠕变机理主要为蠕变位错机理。室温蠕变速率敏感指数m值与加载条件无关,主要由材料的微观组织决定。  相似文献   

2.
采用等通道转角挤压(ECAP)Bc路径对固溶态Mg-3.52Sn-3.32Al合金分别挤压1、4和8道次。利用光学显微镜、扫描电子显微镜、透射电子显微镜和X射线衍射仪分析合金的组织和相组成,并测试了其室温拉伸力学性能。结果表明,经ECAP挤压后,固溶态合金组织中析出大量细小的Mg2Sn相和极少量的Mg17Al12相。随挤压道次增加,合金的综合力学性能先提高后降低。经4道次挤压后,合金的综合拉伸力学性能相对较佳,抗拉强度、伸长率和硬度分别达到250 MPa、20.5%和61.3 HV9.8,较未ECAP时分别提高43.7%、105%和26.9%。经ECAP挤压的合金室温拉伸断口均呈韧性断裂。等通道转角挤压Mg-3.52Sn-3.32Al合金的力学性能受晶粒尺寸、析出相以及组织织构的共同影响。  相似文献   

3.
钛及钛合金由于质轻、弹性模量低、生物相容性佳和骨整合性优异,已成为应用最广泛的生物医学金属材料之一。然而,较低的塑性、耐腐蚀性能和耐磨损性能限制了其发展和应用。剧烈塑性变形被认为是对金属材料最有效的晶粒细化方法之一,其中,等通道转角挤压(ECAP)是制备块状超细晶(UFG)/纳米晶金属材料的常用技术。通过ECAP变形,可以制备具有优异综合性能的UFG钛及钛合金。本文综述了生物医用UFG钛及钛合金的ECAP制备方式,着重讨论了ECAP变形对钛及钛合金的组织、力学性能、耐腐蚀性能和耐磨损性能的影响,分析了钛及钛合金的ECAP变形机制和晶粒细化机制,提出了通过ECAP变形结合传统塑性加工和变形后热处理来进一步优化钛及钛合金综合性能的想法。  相似文献   

4.
Equal channel angular pressing (ECAP) is one of the most effective processes to produce ultra-fine grain (UFG) and nanocrystalline (NC) materials. Because the commercially pure titanium exhibits excellent biocompatibility properties, it has a significant potential to be utilized as an implant material. The low static and dynamic strengths of the pure titanium are one of the weaknesses of this material. This defect can be removed by applying the ECAP process on the pure titanium. In this work, the commercially pure titanium Grade 2 (CP-Ti of Grade 2) was pressed at room temperature by the ECAP process via a channel angle of 135° for 3 passes. The microstructural analysis and mechanical tests such as tensile test, hardness test, three-point bending test and Charpy impact test were all carried out on the ECAPed CP-Ti through 3 passes. The microstructural evolution reveals that by applying the ECAP process, coarse grain (CG) structure develops to UFG/NC structure. Moreover, the results of the mechanical tests show that the process significantly increases the yield and ultimate tensile strengths, bending strength, hardness and fracture toughness of the commercially pure titanium so that it can be used as a replacement for metallic alloys used as biomaterials.  相似文献   

5.
连续等径角挤压制备超细晶铜   总被引:5,自引:0,他引:5  
介绍一种制备超细晶材料的新技术———连续等径角挤压,它将连续挤压技术应用于制备超细晶材料的等径角挤压工艺,解决了传统等径角挤压不能制备大尺寸超细晶材料的问题,该技术对超细晶材料的推广应用具有重要意义。通过DEFORM3D对铜的连续等径角挤压过程的数值模拟,得到变形过程中金属的流动、应变场和温度场情况,并对不同变形速度和摩擦条件下的变形过程进行比较,得到优化的工艺参数,并以此参数进行实验。实验结果表明,连续等径角挤压后铜的硬度明显上升,连续等径角挤压3道次后,硬度趋于饱和;连续等径角挤压12道次后,铜的平均晶粒尺寸为400 nm。  相似文献   

6.
等通道转角挤压Al-10Mg-4Si合金的组织与性能研究   总被引:1,自引:1,他引:0  
在250℃下以Bc路径对Al-10Mg-4Si合金进行4道次和8道次的等通道转角挤压,以求达到改善合金组织和提高合金力学性能的目的.扫描电子显微镜(SEM)和透射电子显微镜(TEM)对挤压前后的微观组织分析表明:铸态合金基体晶粒比较粗大,第二相Mg_2Si以粗大的汉字状或骨骼状分布于基体晶界处;经ECAP挤压后,基体晶粒得到细化,原粗大的汉字状Mg_2Si被碎化为短棒状或多边形状颗粒,并呈一定的弥散分布.室温拉伸测试结果表明:ECAP4道次挤压后,合金的抗拉强度和伸长率由铸态的166MPa、1.64%提高为322MPa、21.7%;ECAP8道次挤压后,合金的伸长率继续提高为24.7%.但抗拉强度下降到293MPa.  相似文献   

7.
The present study was motivated by two questions. First, what are the characteristics of grain and phase boundaries in a nanostructured material containing multiple phases? Second, what is the influence of these interfaces on mechanical behavior? Accordingly, a three-constituent Al 5083/B4C ultrafine grain (UFG) composite, consisting of a coarse grain (CG) phase (1–2 μm), an UFG phase (100–200 nm) and B4C particles (∼0.7 μm), was selected for study. Interest in this particular Al 5083/B4C system stems from its hierarchical architecture, which comprises multiple scales, as well as from a reported yield strength of 1145 MPa. The associated grain boundaries (GB) and interfaces were investigated by transmission electron microscopy (TEM), high-resolution TEM, energy dispersive X-ray spectroscopy and electron energy loss spectroscopy methods. The role of high/low-angle GB, equilibrium and non-equilibrium GB within and between the CG and UFG regions, twin boundaries, twist transition boundaries and impurity segregation at GB in strengthening mechanisms is discussed.  相似文献   

8.
在Gleeble-1500热模拟机上对室温120°模具等径弯曲通道变形(ECAP)制备的平均晶粒尺寸为200nm的工业纯钛(CP-Ti)进行等温变速压缩实验,研究超细晶(UFG)工业纯钛在变形温度为298~673K和应变速率为10-3~100s-1条件下的流变行为。利用透射电子显微镜分析超细晶工业纯钛在不同变形条件下的组织演化规律。结果表明:流变应力在变形初期随应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随温度的升高而减小,随应变速率的增大而增大;随变形温度的升高和应变速率的降低,应变速率敏感性指数m增加,晶粒粗化,亚晶尺寸增大,再结晶晶粒数量逐渐增加;超细晶工业纯钛热压缩变形的主要软化机制随变形温度的升高和应变速率的降低由动态回复逐步转变为动态再结晶。  相似文献   

9.
Ultrafine‐grained (UFG) Al‐11mass%Si alloy, processed by multi‐pass equal‐channel angular pressing (ECAP) at 573 K, was investigated on corrosion behavior in 0.6 M NaCl solution. Potentiodynamic polarization tests and scanning electron microscopy observation showed that a large number of ECAP passes resulted in lower corrosion current density, more positive corrosion potential, and rather smooth corroded surface with shallow corrosion pits. The uniform distribution of fine secondary‐phase particles on UFG Al matrix weakened the susceptibility to pitting corrosion while inhibited general microgalvanic reactions. The present results indicate that grain refinement of aluminum matrix to the UFG state and uniform redistribution of broken particles (including eutectic silicon and secondary phases), via severe plastic deformation at elevated temperature undergoing dynamic recrystallization, can significantly improve the corrosion resistance of Al alloys, besides the known exceptional mechanical advantages. The simple and effective ECAP procedure makes UFG Al alloys more attractive for high strength structural application in corrosive environment.  相似文献   

10.
双重淬火对7055铝合金组织性能的影响   总被引:1,自引:0,他引:1  
通过拉伸性能测试、晶间腐蚀和剥落腐蚀性能测试,金相显微镜、透射电子显微镜研究了双重淬火对7055铝合金组织及性能的影响.结果表明:合适的双重淬火可调控晶界和晶内析出状态,使合金时效后晶界上的析出相呈断续分布,晶内沉淀强化相均匀、弥散、细小析出,保证合金高强度的同时,提高晶间和剥落腐蚀性能.  相似文献   

11.
To explore the optimum use of stabilised elements and study the influences of stabilisation in 18 Cr-2 Mo grades,the Nb and Nb+Ti microalloying investigation focused on the relationships of the microstructure and mechanical properties of the microalloyed 18 Cr-2 Mo ferritic stainless steel thick plates.Thermo-Calc calculation was performed to predict the equilibrium phase diagrams.Afterwards,the microstructure,i.e.grain size and precipitation,of as-annealed specimens was analysed by means of optical microscopy,scanning electron microscopy and transmission electron microscopy,X-ray diffraction and energydispersive spectroscopy.Also,electron backscatter diffraction mapping was constructed to characterise grain boundary.The mechanical properties,including tensile strength and impact toughness,were tested to correlate with the microstructure.The results show that the grain sizes of Nb-stabilised steel are comparatively smaller,which is related to the fine precipitation at the grain boundaries and beneficial to the impact toughness.The increase in its strength is not apparent due to the inhomogeneous grain sizes.The grain boundary characters are similar,which is not the main factor related to their mechanical properties.When Ti is added,TiN forms above the liquidus,and large TiN particles evidently impair impact toughness.  相似文献   

12.
An ultrafine-grained Al–Zn–Mg–Zr alloy with superior mechanical performance was obtained by high passes of equal angular pressing (ECAP) and subsequent aging. After 8 ECAP passes and aging, the yield strength (YS) and ultimate tensile strength (UTS) of the solid-solutioned alloy are significantly improved from (98±10) and (226±7) MPa to (405±9) and (427±9) MPa, respectively. A large elongation is also maintained ((17.4±2.5)%). The microstructure features including grain refinement, morphology of precipitates, and dislocation density, were revealed with multiscale characterizations, including transmission electron microscopy, electron backscattered diffraction, and X-ray diffraction. After 8 passes of ECAP, the original coarse elongated grains are refined to a unique bimodal grain structure consisting of ultrafine equiaxed and lath-like grains. Additionally, the effects of ECAP and subsequent aging on the strengthening contribution of a variety of strengthening mechanisms, such as dislocation strengthening and precipitation strengthening, were discussed in detail.  相似文献   

13.
ECAP工艺对TiAl_3-P/Al复合材料组织的影响   总被引:1,自引:0,他引:1  
利用透射电子显微镜和光学显微镜研究了窀温下1~8道次等通道角挤压(ECAP)3工艺对TiAl3-P/Al复合材料组织的影响。结果表明,在ECAP挤压初期Al基体中的位错密度很高,在2道次后急剧降低;组织中位错墙比例在开始也呈现升高的趋势,随着应变量的增加,逐渐向小角度晶界转变;小角度晶界的出现比位错墙晚,晶内小角度晶界的比例变化趋势也是一个先增加后降低的过程,最终转变为大角晶界。ECAP过程中,TiAl3颗粒对Al基体组织变化的作用不明显。ECAP变形有效破碎了较大尺寸的TiAl3颗粒并改善了TiAl3颗粒在Al基体中分布的均匀度。板条状TiAl3在ECAP变形中不仅发生了脆性断裂,还发生了孪生变形,与基体金属的变形相互协调,使少量大尺寸TiAl3颗粒保留下来。  相似文献   

14.
Corrosion of ultra-fine grain (UFG) copper fabricated by equal-channel angular pressing (ECAP) has been investigated in comparison with that in recrystallized coarse grain (CG) copper. Corrosion current was estimated by a Tafel extrapolation method to examine the kinetics of corrosion in a modified Livingstone etchant, which is sensitive to dislocations and grain boundaries. UFG copper exhibited a lower corrosion current in comparison with that in its recrystallized coarse grain (CG) counterpart despite the fact that the dislocation density and total fraction of grain boundaries are much greater in UFG copper than in CG copper. Corrosion damage on the surface of UFG copper is macroscopically rather uniform whereas obvious attack at grain boundaries and selective corrosion of some grain interiors were observed in CG copper.  相似文献   

15.
《Acta Materialia》2008,56(19):5500-5513
The diffusion of 63Ni radiotracer in ultrafine grain (UFG) Cu produced by equal channel angular pressing (ECAP) was studied using the serial-sectioning method. The diffusion annealings were performed in the temperature range of 424–553 K for annealing times at which volume diffusion is negligible and only short-circuit diffusion occurs. Complete or partial recrystallization occurred during all heat treatments, and the explicit expression describing the kinetics of recrystallization was obtained from observations of the microstructure after annealing treatments. The measured radiotracer penetration profiles exhibited two distinct slopes, indicating the co-existence of “slow” and “fast” short-circuit diffusion paths in the system. Based on the results of previous studies, the former were associated with the general high-angle grain boundaries in the non-recrystallized, UFG matrix. A model that considers diffusion in UFG polycrystal undergoing recrystallization was developed. Application of this model enabled us deriving the diffusion coefficients along the grain boundaries in UFG matrix from the experimentally measured radiotracer penetration profiles.  相似文献   

16.
《Acta Materialia》2007,55(19):6596-6605
The present paper reports on the microstructure–mechanical property relationships in an ultrafine-grained (UFG) niobium–1 wt.% zirconium (NbZr) alloy, a potential biomedical material, severe plastically deformed at room temperature utilizing equal channel angular extrusion (ECAE). Monotonic tensile and low-cycle fatigue (LCF) experiments were carried out on the NbZr samples processed along ECAE routes 8BC and 16E, along with extensive microstructure analysis. The important finding is that the NbZr alloy processed along ECAE routes that lead to a higher volume fraction of high-angle grain boundaries (HAGBs) exhibits a stable cyclic deformation response in the LCF regime. This stands in good agreement with prior studies on other materials, such as UFG interstitial-free steel, in which the stable fatigue behavior was associated with the dominance of HAGBs. The current results provide a venue for utilizing the UFG NbZr alloy in biomedical applications that require a combination of long-term durability, high strength and very good biocompatibility, where the latter is not altered by ECAE processing. Furthermore, for the first time, we present guidelines for optimizing processing parameters that define the microstructure–cyclic stability relationship in UFG alloys.  相似文献   

17.
A new magnesium alloy plate added elements Zn, Sn and In was manufactured by twin-roll continuous casting method to improve the precipitation of AZ91 alloy. The effects of elements addition and casting method on microstructure and mechanical properties of the Mg-Zn-In-Sn alloys were investigated by optical microscopy (OM), transmission electron microscopy (TEM), electron probe micro-analysis (EPMA), X-ray diffractometry (XRD) and energy dispersion spectrograph (EDS). The results show that the Mg-Zn-In-Sn alloy has higher tensile strength and better corrosion protection than the AZ91 alloy. The outstanding precipitation strengthening effect of the alloy is attributed to the small grain size and the hard precipitates between the grain boundaries.  相似文献   

18.
2519A铝合金的动态力学性能及本构关系   总被引:1,自引:0,他引:1  
为研究应变速率及温度对2519A铝合金流变应力的影响,对2519A铝合金进行动态力学性能测试及准静态拉伸实验,结合光学显微镜及透射显微电镜分析应变速率及温度对微观组织演化的影响。研究结果表明:2519A铝合金具有应变速率效应及温度敏感性。采用变量分离与非线性拟合方法对准静态及霍普金森压杆(SHPB)实验数据进行拟合,得到2519A铝合金的Johnson-Cook本构模型参数,曲线拟合与实验结果吻合较好,为力学性能的研究及抗弹性能有限元分析提供了参考。  相似文献   

19.
To avoid grain boundary (GB) precipitation during aging, a new strategy of in situ thermomechanical processing for age hardening alloys was proposed. Specifically, high-density nanoscale precipitates were introduced into ultrafine grain (UFG) interiors of 7075Al alloy by equal-channel-angular (ECAP) processing at 250 °C for 8 passes, thus avoiding GB precipitation. Tensile test results indicated that the UFG 7075Al alloy exhibits superior mechanical properties (yield strength of 350 MPa, ultimate tensile strength of 500 MPa, uniform elongation of 18% and tensile ductility of 19%) compared with the UFG 1050Al counterpart (yield strength of 170 MPa, ultimate tensile strength of 180 MPa, uniform elongation of 2.5% and tensile ductility of 7%). Fracture surface morphology studies revealed numerous homogeneous micro shear bands in necking shrinkage areas of both UFG 7075Al and 1050Al alloys, which are controlled by cooperative GB sliding. Moreover, the introduction of nanoscale precipitates in UFG 7075Al matrix weakened the tendency of shear fracture, resulting in a higher tensile ductility and more homogeneous deformation. Different from the GB precipitation during postmortem aging, in situ thermomechanical treatment dynamically formed GBs after precipitation, thus avoiding precipitation on GBs.  相似文献   

20.
The microstructure, precipitate type, precipitate distribution and tensile strength of a ZL205 alloy, before and after ageing treatment, have been studied by means of optical microscopy and transmission electron microscopy. The results showed that the as-cast microstructure of the alloy was made up of α-Al and eutectic phase distributed at the grain boundaries. During ageing treatment, the tensile strength increased at first and then reduced with time, and the highest ultimate tensile strength was found to be around 488.2 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号