首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用固-液双金属复合铸造法对Al/FeCrAl进行复合,并通过此方法成功制备了Al/FeCrAl双金属复合材料。采用光学显微镜、扫描电镜、热处理试验和显微硬度计对材料界面组织和相组成进行了分析。结果表明:Al/FeCrAl双金属复合材料界面以冶金结合方式进行结合;热处理温度在500℃及以上时,Al元素向表面或者过渡层急速扩散并在过渡层产生氧化反应形成大量的Al_2O_3;复合材料显微硬度从喷涂层到基体层逐渐递减。  相似文献   

2.
采用固-液复合方法制备了铝包铜复合导电头,利用扫描电镜(SEM)及能谱仪(EDS),对Cu/Al复合界面的微观组织形貌及相组成进行分析,并采用剪切试验、微观硬度测试、涡流导电仪及电化学测试对Cu/Al复合界面的结合强度、微观硬度、界面导电性及耐腐蚀性能进行了研究。结果表明,固-液复合法制备的铝包铜导电头Cu/Al界面由大量金属间化合物与Al基体的混合物相组成,界面过渡层平均宽度约为500μm,存在分布不均匀且尺寸较大的类孔型缺陷及细小的裂纹,界面连接强度较低,为6~10 MPa,界面耐腐蚀性和导电性较差。导电头使用前后Cu/Al异质界面组织及性能对比分析表明,铝包铜导电头界面失效的主要原因是界面大量缺陷和较厚的界面过渡层致使界面处导电性变差,从而在通电时电阻发热严重恶化界面,最终导致失效。  相似文献   

3.
利用压力条件下固-液复合法,在不同的铝液浇注温度下制备铜/铝复合材料,并对复合界面的结合性能和组织结构进行了研究。结果表明:在铜板预热温度400℃、单位压力1 000 MPa等其他条件相同的前提下,铝液浇注温度720℃时制备出的铜/铝复合材料抗拉强度最大,约为40.07 MPa;冶金复合界面层内部又分为不同的内层,且随着浇注温度的升高,内层数增加;沿着铝基体到铜基体的方向界面层各内层相分别为α-Al+CuAl2、CuAl2、CuAl,且各内层厚度逐渐减薄;拉伸断裂易发生在含CuAl2的层。  相似文献   

4.
为研究Cu/Al固-液复合界面的微观形貌及其动态演化规律,利用共聚焦激光扫描高温显微镜(CLSM)对Cu/Al扩散偶在快速加热至Al液相温度610℃及其保温过程中的固-液复合界面进行了原位观察。并结合复合界面扫描电镜和X射线能谱仪分析结果,探讨了CLSM下界面图像视觉变化与连接界面反应扩散迁移的对应关系,以及CLSM原位观察的可行性。结果表明,高温反应扩散和局部熔合是Cu/Al固-液复合界面结合的主要机制,复合层主要为Al_2Cu。且在无压力作用下,界面夹杂物和氧化层物会严重削弱界面的结合效果。  相似文献   

5.
研究液固体积比对消失模铸造Al/Cu双金属界面组织和性能的影响,并对Al/Cu双金属界面的形成机理进行讨论。结果表明:液固体积比为3:1时Al/Cu双金属材料无法形成有效的冶金结合,当液固体积比超过5:1时,Al/Cu双金属材料连接区域部分位置开始发生冶金结合;在发生冶金反应的情况下,Al/Cu双金属界面面均由Al4Cu9层,AlCu层,Al2Cu层和共晶反应层4层组成;随液固体积比增大,由于凝固时间延长和铜基体的溶解增加的共同作用,共晶反应层组织出现先粗大后细化的变化。Al/Cu界面层的硬度在140~190HV之间,未呈明显的规律性,随着液固体积比的增大,Al/Cu双金属材料的剪切强度先增加后减小,并在在7:1时达到最大值(81 MPa),且均从金属间化合物(IMCs)层发生断裂。  相似文献   

6.
利用固-液铸轧复合(简称SLCRB)技术,在d160 mm×150 mm二辊实验铸轧机上制备Cu/Al复合带,并对其界面扩散层的反应程度、反应产物组成及显微组织演变规律进行SEM、EDS和XRD分析。结果表明,铸轧液相熔池内,液态铝液与铜带接触后在其表面形成初始渗铝层,界面成分主要为α(Al)+Cu Al2,且扩散层厚度在高温下逐渐生长变厚,最厚处约为10μm;进入低于kiss点的固相区后,扩散层在剧烈轧制延伸变形作用下破裂,界面两侧原始基材被挤出接触后形成新的复合界面,在铸轧出口处形成沿轧制方向弥散分布的CuAl_2、CuAl和Cu9Al4,扩散层平均厚度由10μm减薄至5μm且较为均匀。剥离和折弯性能测试结果表明,所制备的Cu/Al复合带剥离断裂面出现在Al基体侧,断口呈显著韧性断裂,试件经90°~180°折弯后未出现界面撕裂现象。研究成果为高效短流程制备Cu/Al复合带提供了工艺基础。  相似文献   

7.
通过Conclad连续挤压法,在挤压温度为500℃下制备出了界面平直度较好,界面层厚度为93μm,界面结合强度高的侧向复合型Cu/Al复合材料。对复合材料界面的力学性能、界面形貌及微观组织进行分析,可知越靠近界面处硬度越高,界面层的抗拉强度为48 MPa,复合界面层存在除铜基体和铝基体以外的金属间化合物,排序从铜基一侧到铝基一侧依次为Cu_9Al_4、CuAl和CuAl_2。而CuAl2是一种脆性相,它的存在容易引起界面结合处出现断裂现象。  相似文献   

8.
采用箔-纤维-箔法制备SiC_f/Ti6Al4V/Cu复合材料,研究Ti6Al4V在连续SiC纤维增强Cu基复合材料中作界面改性涂层时的界面反应结合特征.利用光学显微镜、扫描电镜和能谱仪分析复合材料显微组织、断口形貌以及SiC_f/Ti6Al4V界面和Ti6A14WCu界面的反应扩散特征.结果表明:该复合材料的抗拉强度并没有显著提高;SiC_f/Ti6Al4V界面反应非常微弱;而Ti6Al4V/Cu界面反应非常明显,主要是Ti原子与Cu原子之间的反应,反应层厚度约为20 μm;反应产物主要呈4层分布,分别为CuTi_2、CuTi、Cu_4Ti_3和Cu_4Ti.  相似文献   

9.
利用液-固铸轧技术制备A356/2024层状复合材料,研究了Zn中间层和浇注温度对液-固铸轧A356/2024层状复合材料界面组织的影响,并分析了复合材料的界面剪切强度和硬度分布。结果表明,采用表面镀Zn预处理能够有效地去除2024铝合金基板表面的氧化膜,并形成Zn包覆层,避免了二次氧化的发生。当浇注温度为700℃时,复合界面剪切强度从未镀Zn预处理的100MPa提升到镀Zn预处理的141 MPa,剪切强度提高近40%。当浇注温度为700℃时,由于Zn中间层的存在,使得镀Zn预处理的复合材料相比于未镀Zn预处理的会在2024铝合金基板一侧出现硬度峰;在高温铝液的热作用下,Zn中间层会使得Al基板表面形成更宽的熔融区域并形成更多的硬化相,导致硬度峰值的出现。  相似文献   

10.
采用真空扩散焊接技术制备304不锈钢与QAl9-4铝青铜双金属复合材料,通过金相显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)分析了钢/铜复合界面的显微组织、相结构及化学成分,利用硬度测定仪及拉伸试验测试了界面处的力学性能。结果表明:在(1150±50)℃、4.0×10~(-2)Pa真空条件下,界面结合紧密,基体两侧的Fe、Al、Cu等合金原子发生互扩散,形成宽约140μm的过渡层,主要物相为Al Cr Fe_2、Al_4Cu_9、Al Ni3等,显微硬度最大值为420 HV0.02。复合材料的抗拉强度是278 MPa,拉伸断口在复合界面处,呈脆性断裂特征。钢/铜扩散焊接的机理是基体钢中Fe、Cr等元素优先在铜表面铺展润湿,在界面处与其他合金原子(Al、Cu等)发生相互扩散形成过渡层,最终形成良好的冶金结合。  相似文献   

11.
采用熔覆法制备Cu/Mo/Cu复合材料,利用金相显微镜对Cu/Mo/Cu复合材料的界面结构、显微组织进行研究,并通过扫描电镜分析了熔覆+轧制材料的断裂特点和界面结合特性。结果表明:熔覆复合界面平直且结合紧密;熔覆后钼层靠近界面的晶粒发生静态回复和再结晶,分布均匀呈等轴状,钼层中间位置的晶粒沿水平方向保持了原有的扁平状,铜层晶粒为粗大晶粒,大小不一且分布不均匀;铜层为韧性断裂,钼层发生分层断裂现象;剥离过程中材料沿着界面附近分层严重的钼层开裂,复合界面结合紧密。  相似文献   

12.
杨建明  冯立超  尚峰  陈华 《热加工工艺》2012,41(24):128-130
采用粉末注射成形技术制备了SiCp体积含量分别为5%、10%和15%的SiCp/Cu复合材料,对该复合材料的显微组织、显微硬度和抗拉强度进行了检测,观察了拉伸断口的形貌,对拉伸断口进行了能谱分析.结果表明:SiC颗粒较均匀地分布在Cu基体中;随着SiCp含量的增加,该复合材料的硬度增大,而抗拉强度先增大后减小;该复合材料拉伸断裂的裂纹源主要为SiC颗粒附近Cu基体的开裂、SiC颗粒与Cu基体界面的脱粘两种情况;在氢气气氛条件下烧结得到的该复合材料中不含O元素.  相似文献   

13.
研究退火温度对异步轧制法制备的铜/铝复合板界面组织及力学性能的影响,采用SEM观察界面组织形貌,结合EDX、XRD分析界面物相成分,采用显微硬度和室温拉伸实验表征复合板的力学性能。结果表明,异步轧制法制备的铜/铝复合板界面形变储能较高,退火温度为400℃时界面扩散明显;随着退火温度的升高,复合界面先后生成金属间化合物CuAl2、Cu9Al4、CuAl相,界面撕裂位置位于金属间化合物之间;界面层的显微硬度比基体的高,这是因为受到硬脆性化合物和高温软化的共同影响;退火温度越高,复合板抗拉强度越低,断裂伸长率越大。研究表明,异步轧制法制备的铜/铝复合板最佳退火温度为400℃。  相似文献   

14.
采用化学镀法在纯铜基体上镀上镍-磷镀层,并通过液固复合铸造工艺制备Al/Cu双金属材料。研究不同工艺参数(结合温度、预热时间)下Al/Cu接头的显微组织、力学性能和导电性能。结果表明,各种金属间化合物在界面处形成,其厚度和种类随结合温度和预热时间的增加而增加。Ni-P夹层发挥了扩散阻碍层和保护膜的作用,有效地减少了金属间化合物的形成。Al/Cu双金属复合材料的剪切强度和电导率随金属间化合物厚度的增加而减小,特别地,Al_2Cu相的不利影响相比其他金属间化合物更加明显。在780°C预热150 s条件下制备的试样表现出最大的剪切强度和电导率,其值分别为49.8 MPa和5.29×10~5 S/cm。  相似文献   

15.
研究了Cu/Al/Cu层状金属复合材料的电子束焊,对焊接接头的表面成形、微观组织、力学性能进行分析。结果表明,采用电子束焊可以实现Cu/Al/Cu层状金属复合材料的有效连接。不同金属层焊缝宽度明显不同,铝层焊缝宽度最大,且铝层金属大量进入顶部和底部的铜层焊缝中。各层母材和焊缝界面均出现了IMCs层,铝层主要是Al2Cu,铜层则主要是AlCu,Al2Cu。在焊缝中心生成大量的块状Al2Cu,均匀分布在α-Al和Al2Cu组成的共晶组织基体中。接头抗拉强度为44 MPa,断口呈现明显的脆性断裂特征,拉伸断裂位置于显微硬度最高的焊缝中心区。 创新点: (1)采用Cu/Al/Cu层状金属复合材料代替纯铜在工业领域的应用。 (2)采用电子束焊接技术实现Cu/Al/Cu三明治结构层状金属复合材料的焊接。  相似文献   

16.
将冷轧法制备的Cu/Al复合材料在475-525℃温度下退火1-8min,采用有限元软件模拟了Cu/Al复合材料在退火过程中的温度场,并采用扫描电镜(SEM)、X射线衍射仪(XRD)、能谱仪(EDS)、电子背散射衍射(ESBD)、显微硬度计等研究了Cu/Al复合材料的显微组织与力学性能。结果表明:在Cu/Al复合材料界面依次生成了CuAl<sub>2</sub>、Cu<sub>9</sub>Al<sub>4</sub>和CuAl等3种金属间化合物,在Cu/Al界面层厚度小于4μm的退火工艺范围内,Cu和Al基体发生完全再结晶形成等轴晶,Cu、Al基体的显微硬度能够迅速的降低至低温长时间(350℃、1h)退火的硬度。另外,提出了金属间化合物初生相的形核机理,分析计算了高温短时退火工艺下的形核动力学,并提出了非等温条件下的金属间化合物生长厚度的经验数值方法。  相似文献   

17.
研究异步冷轧退火工艺制备的Al/Cu多层复合材料的组织演化及其对力学性能的影响。采用SEM和TEM分析界面组织,用界面剥离实验和拉伸实验测试复合板的力学性能。结果表明:异步冷轧复合工艺可以获得界面紧密连接的超细晶多层复合材料。退火促进Al和Cu连接界面上金属原子的扩散,甚至导致金属间化合物的生成。复合板的连接界面在300°C退火时发生固溶强化现象,界面的连接强度达到最大,但是在更高温度退火时界面生成的金属间化合物导致连接性能急剧下降。在300°C退火时,复合板组织发生再结晶并获得较高的抗拉强度;而在350°C退火时,界面存在亚微米厚度的过渡层,有利于位错滑移运动,因此复合板获得较高的伸长率。  相似文献   

18.
为了改善碳纤维与Al基体的润湿性和抑制Al基体对碳纤维的反应腐蚀,采用电镀工艺结合超声辅助振荡分散法,在碳纤维表面制备了均匀、光滑、连续的Cu界面层。通过真空压力浸渗法制备了碳纤维增强铝基复合材料。微观组织结构分析表明,Cu界面层的引入,使得所制备的复合材料中碳纤维分散好、基体致密度高、Al熔体能很好地浸渗到碳纤维束丝中形成结合良好的碳纤维-基体界面;同时,Cu界面层的引入可以避免Al熔体对碳纤维的腐蚀。力学性能测试表明,与工业纯Al相比,当碳纤维的体积分数为8%时,材料的拉伸强度可以提高143%。断口分析表明,在拉应力作用下,碳纤维-基体复合区域的碳纤维在Al基体中发生了滑移或拔出,因此在碳纤维的滑移和拔出过程中裂纹扩展被抑制,从而大大提高铝基复合材料的强度。  相似文献   

19.
吴清军  蔡晓兰  乐刚 《热加工工艺》2012,41(2):119-120,123
采用高能球磨法制备了SiC颗粒增强Al基复合材料,研究了SiC含量对该复合材料力学性能的影响。结果表明,SiC/Al复合材料的硬度、屈服强度以及抗拉强度随SiC含量的增加而增大,而伸长率随之减小;SiC/Al复合材料呈延性断裂和脆性断裂混合断裂;随着SiC含量的增加,材料延性断裂特征减少。  相似文献   

20.
采用真空扩散焊工艺,在加热温度500℃、保温时间40 min、压力2.5 MPa、真空度1.0×10-2 Pa下制备了变形镁合金AZ31B/Cu双金属复合材料,并对复合材料界面区的微观结构和力学性能进行分析,探讨了界面反应层的形成机理。结果表明:铜在镁合金一侧富集出现晶界渗透现象。镁合金/Cu界面的组织依次为:α-Mg和沿其晶界析出相Mg17(Cu,Al)12/α-Mg/(α-Mg+Mg2Cu)共晶/Cu2Mg金属间化合物/(α-Mg+Mg2Cu)共晶/Cu(Mg)固溶体。硬度在基体两侧到界面中心区域内呈台阶式增加,最高显微硬度达到3510 MPa。Cu2Mg两侧的共晶液相出现具有先后次序,晶界渗透区与Cu2Mg之间先形成Mg-Cu共晶液相,然后共晶液相中的Mg原子穿越Cu2Mg层扩散至Cu侧,在Cu2Mg与Cu(Mg)固溶体之间形成Mg-Cu共晶液相。复合材料的界面抗剪强度达到61 MPa,剪切断裂发生在界面扩散层内,断口由撕裂棱和撕裂棱两边的大小不一的解理台阶构成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号