首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以柠檬酸(CA)为掺杂剂通过化学氧化法合成了一种掺杂态的聚苯胺(PANI-CA),并将合成的PANICA混入溶胶凝胶法制备的硅溶胶中,刷涂在Q235钢表面制备复合防腐涂层。采用红外光谱(FTIR)表征了PANI-CA和硅溶胶的结构;研究了PANI-CA含量对复合涂层疏水性、附着力及防腐性能的影响;阐述了复合涂层的防腐机理。结果表明:当PANI-CA含量为4%时,得到的复合涂层表现出较好的疏水性和防腐性能,其水接触角为115.4°,吸水率为5.84%;由极化曲线拟合得到的腐蚀电流密度为2.34×10-7A·cm-2,电化学阻抗值达到106Ω·cm~2。  相似文献   

2.
目的以典型直升机主减撑杆为例,优选小内径管状结构内腔阴极电泳防腐工艺。方法应用中性盐雾试验、丝状腐蚀试验、电化学阻抗法等方法,考察不同电泳电压和槽液温度对电泳漆膜防腐蚀性能的影响;采用加速腐蚀试验对比分析防腐措施改进前后涂层的防腐蚀效果。结果 4种电泳漆膜中性盐雾试验480 h后划痕处均出现锈蚀,盐雾试验2000 h后,4~#工艺电泳电压350V、槽液温度34.9℃时,制备的电泳漆膜划痕处锈蚀未见明显变化。4种电泳漆膜耐丝状腐蚀性能满足MIL-PRF-23377J的要求。在3.5%(质量分数)Na Cl溶液中浸泡2000 h后,4~#工艺制备的漆膜电化学阻抗值最大,稳定在6×1010Ω·cm~2左右;3~#工艺电泳电压350 V、槽液温度34.3℃时,制备的漆膜电化学阻抗值最小,从浸泡初期的6×10~(10)Ω·cm~2降至9×10~7Ω·cm~2。各项性能测试表明,4种电泳工艺制备的漆膜均具有优异的防腐性能;4~#工艺制备的漆膜防腐性能最优,4种电泳工艺中最佳管状结构内腔电泳工艺为:电泳电压350 V,槽液温度34.9℃。阴极电泳涂装替代灌涂后,涂层的使用寿命可提高40倍以上。结论阴极电泳防腐技术能够有效解决内腔结构防腐难题,明显改善内腔结构的抗腐蚀品质。  相似文献   

3.
分别以碳系材料石墨烯、炭黑、石墨为导电填料,生漆复合物为基材制备生漆复合抗静电涂层,讨论了导电填料含量对涂层导电性与力学性能的影响,并用扫描电镜(SEM)和热重分析仪(TGA)对涂层进行分析。结果表明:当导电填料石墨烯、炭黑、石墨的添加量分别为0.6%、15%、15%时,涂层具备抗静电能力。石墨烯复合涂层的附着力为0级、柔韧性1mm、耐冲击性50cm,优于未加填料的涂层以及添加石墨、炭黑为导电填料的复合涂层。同时,石墨烯复合涂层的耐介质性能以及耐热性能均表现优异。  相似文献   

4.
为提高海洋环境环氧(EP)涂层长效防腐蚀性能,选用蒙脱土(Mt)聚苯胺(PANI)复合物对环氧涂层进行改性,研究其耐蚀性能与机理。首先采用化学氧化法制备PANI和四种不同Mt含量的PANI复合物,然后以EP为成膜物质,在Q235钢上制备不同含量PANI-Mt100∶7的环氧复合涂层,通过红外光谱(FTIR),X射线衍射(XRD),扫描电镜(SEM)对PANI、PANI-Mt微观结构和形貌进行研究并利用电化学方法研究复合环氧涂层在3.5%NaCl溶液中的腐蚀性能与机理。结果表明:改性环氧涂层在浸泡0.5h和360h时的阻抗值分别为8.7×106Ω·cm~2和6.3×104Ω·cm~2,而掺入PANI-Mt100∶7后环氧涂层阻抗值明显增大,当PANI-Mt100:∶7掺入量为5%(质量分数)时,环氧涂层在浸泡0.5h和360h时的阻抗值最大,分别为2.7×108Ω·cm~2和1.1×107Ω·cm~2。  相似文献   

5.
针对铁路扣件在沿海区域遭受冲蚀和海洋腐蚀难题,本文研制一种新型防腐抗冲蚀复合涂层。采用石墨烯锌防腐底漆和抗冲蚀弹性聚氨酯面漆,通过盐雾实验、电化学测试和涂层硬度测试评价复合涂层的综合防护性能。结果表明,制备的复合涂层抗冲蚀性能较好,在3.5% (质量分数) NaCl溶液中浸泡28 d后涂层电阻仍达到18.9 MΩ·cm2,复合涂层耐盐雾性能超过1500 h。  相似文献   

6.
在Sa2等级的钢材表面制备出一种低表面处理环氧防腐底漆,其固含高达80%,实干速度只需4 h,平均附着力可达10 MPa,室外暴晒5 a涂层无任何开裂、脱落,且耐酸、碱、盐溶液腐蚀性能优异。利用Fourier红外光谱(FTIR)、电化学阻抗谱技术(EIS)和三维视频显微镜对涂层的电化学性能和耐蚀机理进行了研究,结果表明,经过2400 h海水浸泡,涂层阻抗可达1010Ω·cm2,耐海水腐蚀性能优异,阻抗值随浸泡时间的延长先减小后增大。环氧树脂和聚酰胺固化交联形成的致密涂层对腐蚀介质起到了很好的屏蔽作用,中后期磷酸锌颜料与钢材表面铁锈反应生成的稳定络合物阻止了腐蚀介质的渗入,是其耐腐蚀和实现低表面处理的关键。  相似文献   

7.
樊星  李学宽  李阳  肇研  熊瑜 《表面技术》2018,47(5):159-166
目的选用复合材料用耐环境涂层体系的最优厚度使用比例,提高复合材料的综合力学性能和耐湿热性。方法针对复合材料用底漆/面漆涂层体系,通过控制喷涂工艺将涂层的厚度控制转化为层数控制,设计4组不同层数的底漆/面漆涂层,对单层和多层复合材料用抗腐蚀涂层体系的柔韧性、附着力、冲击性能以及耐湿热性能进行了系统表征。结果随着涂层厚度的增加,涂层体系的柔韧性、附着力、耐冲击性能均有所降低。涂层通过隔绝水环境与复合材料的直接接触,有效降低了吸湿速率,具有较好的湿热防护性能,随着涂层厚度的增加,耐湿热性提高。涂层体系的柔韧性、附着力、耐冲击性能以及耐环境性能与厚度之间并非简单的线性关系。结论通过控制涂层单层厚度将厚度优化转变为层数优化,提出了一种有机涂层厚度优化的试验方案,并确定(1×2)厚度设计下涂层兼具较优的力学性能和耐湿热性能。  相似文献   

8.
研究了含量分别为0%,1%,3%和5%(质量分数)的硅烷偶联剂改性前后的纳米TiO_2对涂覆在45#碳钢上的聚氨酯涂层耐蚀性能的影响。场发射电镜(FESEM)测试结果表明,未改性纳米TiO_2在涂层中以团聚体的状态存在,经过硅烷偶联剂KH-570改性后的纳米TiO_2在涂层中均匀分散,其中含量为3%的涂层结构最为致密。采用电化学阻抗(EIS)技术研究了纳米TiO_2/聚氨酯复合涂层在3.5%Na Cl溶液中浸泡不同时间的阻抗行为,实验结果表明添加硅烷偶联剂改性纳米TiO_2可明显提高聚氨酯涂层的耐蚀性,其中含3%改性纳米TiO_2的涂层在浸泡过程中,始终呈现一个时间常数特征,在浸泡至2880 h后,涂层电阻仍然为2.6×108Ω·cm2,明显高于其他组分的涂层电阻,表明该涂层具有最好的耐蚀性。  相似文献   

9.
研究了含量分别为0%,1%,3%和5%(质量分数)的硅烷偶联剂改性前后的纳米TiO_2对涂覆在45#碳钢上的聚氨酯涂层耐蚀性能的影响。场发射电镜(FESEM)测试结果表明,未改性纳米TiO_2在涂层中以团聚体的状态存在,经过硅烷偶联剂KH-570改性后的纳米TiO_2在涂层中均匀分散,其中含量为3%的涂层结构最为致密。采用电化学阻抗(EIS)技术研究了纳米TiO_2/聚氨酯复合涂层在3.5%Na Cl溶液中浸泡不同时间的阻抗行为,实验结果表明添加硅烷偶联剂改性纳米TiO_2可明显提高聚氨酯涂层的耐蚀性,其中含3%改性纳米TiO_2的涂层在浸泡过程中,始终呈现一个时间常数特征,在浸泡至2880 h后,涂层电阻仍然为2.6×108Ω·cm2,明显高于其他组分的涂层电阻,表明该涂层具有最好的耐蚀性。  相似文献   

10.
目的为提升氟碳涂层的耐磨和防腐性能。方法采用KH550对钛酸铁钠晶须进行改性,并将改性晶须分散于氟碳树脂(FEVE)中,制备钛酸铁钠晶须/FEVE复合涂层。采用红外光谱、接触角、光学显微镜、金相显微镜和扫描电镜等表征方法,分析了改性前后钛酸铁钠晶须的变化及其在树脂中的分散性。采用电化学交流阻抗研究了涂层在模拟海水中的电化学腐蚀行为。采用摩擦磨损试验机研究了涂层的摩擦学性能。结果钛酸铁钠晶须经改性后,接触角由14.5°增大为111°,呈现出优异的疏水性,能够均匀分散于FEVE中。交流阻抗测试结果表明,复合涂层的防护性能随晶须含量的增加呈现先提升后降低的趋势,当晶须质量分数为10%时,复合涂层的电化学阻抗高达1011?·cm2,优于纯氟碳涂层,呈现出优异的耐腐蚀性能。晶须含量过高时,因晶须交联形成网络结构而降低了涂层的防腐性能。钛酸铁钠晶须的添加同时大幅提升了FEVE涂层的耐磨性能,晶须质量分数为5%的复合涂层表现出最优的摩擦学性能,体积磨损量低至0.0164mm3,较纯FEVE涂层提升11.2倍。结论钛酸铁钠晶须/FEVE复合涂层具备优异的耐磨防腐性能,能有效降低实际工况中的涂层损伤,延长涂层的使用寿命。  相似文献   

11.
氮化硅掺杂环氧树脂复合涂层的制备及耐腐蚀性能研究   总被引:3,自引:3,他引:0  
目的将氮化硅作为填料加入环氧树脂,提高碳钢Q235有机涂层的耐腐蚀性能。方法利用球磨法将氮化硅填料均匀分散在环氧树脂中,探究了不同氮化硅含量涂层对Q235碳钢基体的保护,利用电化学阻抗谱(EIS)、吸水率实验、附着力实验及盐雾实验表征不同氮化硅含量涂层在3.5%NaCl溶液中的耐腐蚀性能。结果添加氮化硅后,涂层的低频阻抗模值及干湿态附着力均有不同程度提高。同时,氮化硅的加入降低了涂层的吸水率,增加了涂层的耐盐雾时间。浸泡初期(0.5 h),环氧树脂涂层(不含氮化硅)的低频阻抗模值为7.7×10~8?·cm~2,添加氮化硅的涂层的低频阻抗模值均增加了两个数量级,氮化硅含量为5%涂层的低频阻抗模值最大,为8.6×10~(10)?·cm~2。随着浸泡时间的增加,不同氮化硅含量的涂层低频阻抗模值均有不同程度的降低。其中,氮化硅含量(占环氧树脂质量的百分比,后文同)为5%的涂层的低频阻抗模值降低程度最小。浸泡2400 h之后,氮化硅含量为5%的涂层的低频阻抗模值最高,仍然能够达到3.3×10~8?·cm~2。结论氮化硅填料的加入提高了涂层的耐腐蚀性能,一定程度上可以保护金属基体免受腐蚀破坏。并且,当氮化硅含量为5%时,涂层的耐腐蚀性能最好。  相似文献   

12.
电解液对 2A12 铝合金硬质阳极氧化膜层性能的影响   总被引:3,自引:1,他引:2  
目的对硫酸、混合酸电解液体系中制备的2A12铝合金硬质阳极氧化膜层性能进行研究,找出混合酸电解液体系对2A12铝合金硬质阳极氧化过程的影响机理,为改善膜层的耐蚀性能提供一种思路。方法通过对膜层厚度、显微硬度、微观形貌、极化曲线、交流阻抗试验结果进行分析,研究不同电解液对2A12硬质阳极氧化膜层性能的影响。结果在有机酸的活性吸附作用下,混和酸电解液解决了硫酸电解液制备2A12铝合金硬质阳极氧化膜存在的厚度、硬度不均匀及烧蚀现象,制备的膜层厚度范围为35~38μm,硬度范围为386~407HV0.05,具有厚度和硬度分布均匀、离散性小的特点。极化曲线及电化学交流阻抗分析表明,混合酸电解液体系中制备的2A12铝合金硬质阳极氧化膜层未进行封孔处理时,膜层的自腐蚀电位为-619.93 m V,阻挡层电阻为1.4×105Ω·cm2;封孔处理后,膜层的自腐蚀电位为-74.69m V,阻挡层电阻为2.376×106Ω·cm2。这说明封孔处理能够改善阻挡层的质量,显著提高膜层的耐腐蚀性能。结论采用混合酸电解液体系能够稳定制备出2A12铝合金硬质阳极氧化膜层,制备的膜层应进行封孔处理。  相似文献   

13.
碳纳米管改性无机-有机水性富锌涂料的制备及其性能   总被引:1,自引:0,他引:1  
在常见的水性无机硅酸盐富锌涂料中添加适量的硅丙乳液及碳纳米管,制成了无机-有机复合水性富锌涂料。对几种不同配比涂层的主要力学性能、电化学性能、耐盐雾性能及耐空蚀性能进行了测试分析,结果表明当硅丙乳液和碳纳米管分别占基料的20%和1%,颜基比为2:1时,涂料的基料稳定,喷涂粘度适中;同时涂层在保持了无机富锌涂料优异耐腐蚀性能的基础上,其耐空蚀性能也得到了很大提高。  相似文献   

14.
本征态聚苯胺/环氧有机硅复合涂层的防腐性能   总被引:2,自引:1,他引:1  
目的研究本征态聚苯胺/环氧有机硅复合涂层在Na Cl溶液中对Q235低碳钢的防腐效果。方法以自制的本征态聚苯胺为防腐颜料,按比例加入填料及助剂,砂磨分散后制备质量分数为0.5%、1.0%及1.5%的本征态聚苯胺/环氧有机硅复合涂层。Q235钢板经砂纸打磨后去油除渍,采用喷涂方式涂覆制备涂层样品。利用扫描电子显微镜观察不同添加量的本征态聚苯胺在环氧有机硅涂层中的分散状态,涂层在质量分数为3.5%的Na Cl溶液浸泡不同时间,采用X射线光谱分析涂层浸泡后的物相,并通过开路电位和电化学阻抗谱对比分析涂层的耐腐蚀性能。结果本征态聚苯胺/环氧有机硅复合涂层中EB添加量(质量分数)为1.0%时,颗粒分散较均匀且能促进形成致密的氧化钝化膜,浸泡后期的涂层表面微孔电阻值较高(Rpo=3.89×106Ω·cm2),表现出良好的电化学性能;添加量(质量分数)为0.5%时颗粒分散较稀疏,涂层的阻抗值和拟合电阻值均下降;添加量(质量分数)为1.5%时涂层的阻抗值和拟合电阻值较小,腐蚀速度不断加快。结论本征态聚苯胺添加量(质量分数)为1.0%时,其在环氧有机硅涂层的分散均匀且致密,并在3.5%的Na Cl溶液中浸泡后对Q235低碳钢表现出良好的防腐效果。  相似文献   

15.
目的提高聚氨酯(PU)/Sm_2O_3复合涂层的近红外吸收与耐温性能。方法以Sm_2O_3为颜料、PU为黏合剂、石墨烯为改性剂,采用喷涂法制备得到了石墨烯改性PU/Sm_2O_3复合涂层。从近红外反射率、外观、微结构及力学性能等方面,系统研究了石墨烯改性对涂层近红外吸收及耐温性能的影响规律。结果石墨烯改性可明显降低PU/Sm_2O_3复合涂层对1.06μm近红外光的反射率,当石墨烯添加量为8%(占Sm_2O_3质量的百分比)时,可使涂层对1.06μm近红外光的反射率从改性前的60.4%降低为17.3%,大大提升了涂层对1.06μm激光的隐身效能。石墨烯改性可使涂层的耐温性能有所增强,改性涂层因热处理而颜色加深的现象有所改善。同时改性涂层相比未改性涂层可保持更加稳定和优越的力学性能,改性涂层经不同温度热处理后的硬度、附着力和耐冲击强度可分别保持在3H、1级和50 kg·cm。结论石墨烯改性可明显提高PU/Sm_2O_3复合涂层的近红外吸收性能,并可在一定程度上提高涂层的耐温性能,从而使涂层可较好地满足实际工程应用要求。  相似文献   

16.
目的通过共生沉积技术将α-Al2O3微粒引入到铸造Al-Si合金微弧氧化膜中,并研究其对膜层耐蚀性的影响。方法利用SEM和XRD分析α-Al2O3微粒对微弧氧化膜微观结构及成分的影响。通过极化曲线、交流阻抗谱及中性盐雾试验评价膜层的耐蚀性。结果α-Al2O3微粒复合改变了微弧氧化膜的组成及结构。微弧氧化膜呈双层结构,表面存在大量微孔,主要组成为γ-Al2O3;加入α-Al2O3微粒后,微弧氧化复合膜的表面微孔大幅减少,致密度提高,且膜层中α-Al2O3相增多。此外,α-Al2O3微粒复合改善了微弧氧化膜的耐蚀性。微弧氧化膜在质量分数为3.5%的Na Cl溶液中的自腐蚀电流密度约为1.476×10-5A/cm2,多孔层电阻Rp及阻挡层电阻Rb分别为0.259 kΩ·cm2及69.18 kΩ·cm2,耐盐雾试验时间为1200 h。加入α-Al2O3微粒后,微弧氧化复合膜的自腐蚀电流密度仅为微弧氧化膜层的28%,Rp大幅增加至274.5 kΩ·cm2,且Rb也上升了一个数量级,耐盐雾试验时间可达1440 h。结论α-Al2O3微粒的引入可以大幅提高铸造Al-Si合金微弧氧化膜的耐蚀性。  相似文献   

17.
张艳  戴雷  黄友元  袁国辉 《表面技术》2017,46(10):42-49
石墨烯复合防腐涂料因兼顾石墨烯优异的化学稳定性、快速的导电性、突出的力学性能和聚合物树脂的强附着力、良好成膜性等优点,受到越来越多涂料防护工作者的关注。然而,目前石墨烯复合防腐涂料的研究主要以溶剂型复合材料为主,环保性差。加快石墨烯在水性防腐涂料中的应用研究,开发低成本、高性能、绿色环保的新型石墨烯水性复合防腐涂料,成为未来石墨烯防腐蚀涂层材料的研究热点。对石墨烯在水性聚氨酯防腐涂料、水性环氧树脂防腐涂料、水性丙烯酸防腐涂料以及水性无机富锌涂料中的功能化应用进行介绍,将石墨烯添加到水性防腐涂料中可以增强涂层对基材的附着力,提升涂料的物理屏蔽性、耐磨性和防腐性,同时具有环保安全的特性,大大扩大了水性防腐涂料的应用范围。另外,对石墨烯水性复合防腐涂料功能化应用研究所面临的重点、难点进行了分类介绍,包括石墨烯选材、石墨烯与水性涂料的配套体系研究、石墨烯用量以及石墨烯在水性涂料中的分散性和相容性。  相似文献   

18.
目的:研究热浸镀彩涂板常用金属镀层(铝锌合金镀层与纯锌镀层)对彩涂板耐蚀性能的影响。方法通过断面金相、SEM及EDS能谱、循环腐蚀试验和电化学阻抗测试(EIS)等方法,全面对比研究相同单面镀层厚度的镀铝锌与镀锌彩涂板的耐蚀性能。结果在长达250个循环(共计2000 h)的腐蚀试验中,镀锌彩涂板出现了严重的红色锈迹,而镀铝锌彩涂板并未出现明显腐蚀。在 EIS 测试中,两种彩涂板最初的阻抗值约为2×109Ω· cm2,浸泡2 d后镀锌彩涂板阻抗值急剧下降至1.165×108Ω· cm2;浸泡前期,镀铝锌彩涂板阻抗值缓慢下降,15 d后从6.979×108Ω·cm2急剧下降至2.984×107Ω·cm2。EIS等效电路拟合参数表明,镀铝锌彩涂板的电荷转移电阻比镀锌彩涂板高,相应的双电层电容低。SEM和EDS测试结果显示,铝锌合金镀层由底层合金层和外层的富铝和富锌的两相结构组成,而纯锌镀层则由底层合金层和外层纯锌层组成。结论铝锌合金镀层具有独特的富铝和富锌两相结构,使得同等镀层厚度的镀铝锌彩涂板比镀锌彩涂板具有更高的耐蚀性能。  相似文献   

19.
采用微弧氧化工艺,并掺杂B4C颗粒来制备耐磨耐蚀性优异的复合陶瓷膜,系统研究掺杂B4C含量对陶瓷膜微观形貌、物相组成、与基体结合力、显微硬度、粗糙度、耐磨性与耐蚀性的影响。结果表明:相比TiO2陶瓷膜,掺杂B4C颗粒的复合陶瓷膜更均匀致密,且由金红石型TiO2、锐钛矿型TiO2和B4C组成。随B4C浓度增大,陶瓷膜的膜层结合力、耐磨性与耐蚀性均先增强后减弱。由于具有最致密的表面形貌,TiO2-0.9B4C复合陶瓷膜的膜层结合力最大,为22.6 N。TiO2-0.9B4C复合陶瓷膜的破损时间最长,磨痕宽度最小,分别为19.24 min和384.53μm,耐磨性最好,其磨损机理为磨粒磨损与疲劳磨损。其自腐蚀电位与极化电阻最大,腐蚀电流密度最小,分别为-213.38 mV、5.47×10^4Ω·cm^2和2.37×10^-6A·.cm^2,耐蚀性最好。由Bode相图可知,陶瓷膜均由致密内层和疏松表层组成。  相似文献   

20.
陈均  陈宇  卢海艳 《表面技术》2017,46(11):282-286
目的研究石墨烯/偏钒酸钠/有机硅氧烷改性树脂复合防腐蚀涂层对碳钢板的防腐性能。方法采用高分子辅助电化学法合成具有优异水分散性的功能化石墨烯,并将其加入到偏钒酸钠/有机硅氧烷改性树脂涂层中,用于碳钢板的表面防腐。通过透射电镜、拉曼光谱和纳米粒度仪对石墨烯的结构和水分散性进行了表征。利用Tafel曲线、电化学阻抗谱和硫酸铜点滴试验,研究了石墨烯/偏钒酸钠/有机硅氧烷改性树脂复合涂层的耐蚀性能。结果透射电镜和拉曼光谱分析表明成功制备了石墨烯,且石墨烯的Zeta电位值约为-50 m V,赋予了石墨烯优异的水分散性。Tafel曲线测试显示,相对于偏钒酸钠/有机硅氧烷改性树脂复合涂层,加入石墨烯后,复合涂层的腐蚀电流密度明显下降,当石墨烯含量为0.10%(占有机硅氧烷改性树脂的质量百分比)时,腐蚀电流密度下降至0.554×10-6 A/cm2。电化学阻抗谱测试中,石墨烯含量为0.10%的复合涂层的阻抗值最大,表现出良好的抗腐蚀性能。结论所制备石墨烯的加入能够提高石墨烯/偏钒酸钠/有机硅氧烷改性树脂复合涂层对腐蚀因素(水和氧气)的阻隔作用,使复合涂层具有优异的耐蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号