首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
分别对Ti Al合金与TC4钛合金、置氢0.5 wt%的TC4钛合金进行了扩散焊接试验。利用扫描电子显微镜、X射线衍射分析仪、能谱分析仪对接头界面进行了分析,并开展了抗剪强度试验。结果表明,在焊接温度为850℃,连接压力为15 MPa的工艺参数下,当保温时间为5 min时,连接界面存在细小孔洞;当保温时间为15 min时,置氢TC4钛合金的界面孔洞消失,并且产生一定厚度的反应层:保温时间达到30 min时,置氢TC4钛合金与Ti Al合金接头的连接强度平均可达290 MPa。断口分析表明,界面组织主要由Ti Al、Ti_3Al、Ti Al_2和Ti_3Al_5相组成。在相同的扩散焊接工艺规范下,置氢TC4钛合金与Ti Al合金的扩散接头连接强度明显高于未置氢TC4钛合金与Ti Al合金的扩散接头连接强度。  相似文献   

2.
范龙  何鹏 《焊接》2020,(6):47-50,56
对TiAl合金直接扩散焊接和使用置氢0.5%(质量分数) TC4钛合金与TiAl合金的扩散焊接开展了研究,使用了SEM,EDS,XRD和抗剪强度试验等方法分析了焊接接头的组织和性能,研究了焊接温度、连接时间和焊接压力对接头界面及力学性能的影响。结果表明,当工艺参数为1 473 K/60 min/30 MPa时,TiAl合金直接扩散焊接界面孔洞完全消失,接头抗剪强度达到285 MPa;采用置氢0.5% TC4钛合金作为中间层扩散焊接TiAl合金时,当工艺参数为1 123 K/30 min/15 MPa时,扩散焊接界面的孔洞消失,并有一定厚度的反应层生成,接头抗剪强度可达290 MPa,断口界面相组成主要为TiAl,Ti3Al,TiAl2和Ti3Al5等脆性相;相对于TiAl合金直接扩散焊接,采用置氢0.5% TC4合金为中间层扩散焊接TiAl合金能大幅降低TiAl合金扩散焊接工艺参数。  相似文献   

3.
王宇欣  张丽霞  王军  冯吉才 《焊接学报》2011,32(10):105-108
采用AgCu箔片对不同置氢含量的TC4钛合金与C/SiC复合材料进行了钎焊连接.借助SEM,EDS,XRD等分析手段对接头的微观组织、界面结构进行研究,并分析了钎焊工艺参数的影响.结果表明,钎焊温度810℃,保温时间10 min时,置氢含量0.3%的接头界面结构为置氢钛合金/针状韦德曼组织/Ti(s.s)+Ti2Cu过...  相似文献   

4.
采用纯Zr作中间层实现了TC4钛合金的扩散连接。通过扫描电镜(SEM)、能谱分析(EDS)、X射线衍射(XRD)等方法分析了接头界面的微观组织,研究了扩散连接工艺参数对接头界面组织及力学性能的影响。结果表明,界面处生成了成分均匀、连续的钛锆固溶体扩散层,同时扩散层中含有大量板条状的α′-Ti(钛马氏体)相;随着连接温度的升高和保温时间的延长,扩散层的厚度逐渐增加,接头室温抗剪强度呈现出先升高后降低的趋势;当连接温度为800℃、保温时间为40 min、连接压力为5 MPa时,接头室温抗剪强度最高,达到190 MPa。  相似文献   

5.
置氢TC4钛合金与Al2O3陶瓷扩散连接工艺研究   总被引:1,自引:0,他引:1  
采用直接扩散连接的方法实现了置氢TC4钛合金与Al2O3陶瓷的连接,利用光学显微镜、扫描电子显微镜、能谱分析以及X射线衍射等分析手段,确定了TC4/Al2O3扩散连接接头典型的界面结构为TC4/α-Ti/Ti3Al+Al2TiO5/Al2O3。研究了连接温度对TC4/Al2O3接头界面结构的影响规律,随着连接温度的升高各反应层厚度逐渐增加。基于反应动力学方程,计算了氢含量(质量分数)为0%、0.3%、0.4%时,Ti3Al+Al2TiO5层的反应激活能分别为213、172、152kJ/mol。当连接温度为840℃,连接时间为90min,氢含量为0.4%时,接头抗剪强度达到最大值为128MPa,断口分析表明断裂主要发生在Al2O3陶瓷母材侧。  相似文献   

6.
刘多  张丽霞  何鹏  冯吉才 《焊接学报》2009,30(2):117-120
分别采用活性钎料AgCuTi和TiZrNiCu对SiO2陶瓷和TC4钛合金进行了钎焊连接,使用扫描电镜和X射线衍射等手段对接头的界面组织和力学性能进行了研究.结果表明,采用两种钎料均能够实现对SiO2陶瓷和TC4钛合金的连接;SiO2/TiZrNiCu/TC4接头的典型界面为SiO2/Ti2O+Zr3Si2+Ti5Si3/(Ti,Zr)+Ti2O+TiZrNiCu/Ti基固溶体/TiZr-NiCu+Ti基固溶体+Ti2(Cu,Ni)/TC4;SiO2,AgCuTi/TC4接头的典型界面为SiO2/TiSi2+Ti4O7/TiCu+Cu2Ti4 O/Ag基固溶体+Cu基固溶体/TiCu/Ti2Cu/Ti+Ti2 Cu/TC4.当钎焊温度为880℃和保温时间为5 min时,SiO2/TiZrNiCu/TC4接头的最高抗剪强度为23 MPa;当钎焊温度为900℃和保温时间为5 min时,SiO2/AgCuTi/TC4接头的最高抗剪强度为27MPa.  相似文献   

7.
在钎焊时间10 min,钎焊温度820~900℃的条件下,采用AgCu钎料对C/C复合材料和TC4进行了钎焊试验.利用扫描电镜、X射线衍射分析仪、EDS能谱分析仪对接头的界面组织及断口形貌进行了研究.结果表明,C/C复合材料与TC4连接接头的界面结构为C/C复合材料/TiC C/TiCu/Ag(s.s) Cu(s.s) Ti3Cu4/Ti3Cu4/TiCu/Ti2Cu/Ti2Cu Ti(s.s)/TC4.由压剪试验测得的接头抗剪强度可知,在钎焊温度850 ℃,保温时间10 min的钎焊条件下,接头获得的最高抗剪强度达到38 MPa.接头的断口分析表明,接头的断裂位置与被连接处碳纤维方向和钎焊温度有关.当碳纤维轴平行于连接面时,断裂发生在复合材料中.当碳纤维轴垂直于连接面时,若钎焊温度较低,断裂发生在C/C复合材料/钎料界面处;若钎焊温度较高,断裂主要发生在C/C复合材料/钎料界面和钎料/TC4界面处.  相似文献   

8.
采用AgCu28钎料实现了TC4钛合金与QCr0.8铬青铜的真空钎焊,利用SEM, EDS以及XRD等分析方法确定TC4/AgCu/QCr0.8接头的典型界面结构为TC4钛合金/CuTi +Cu3Ti2 +CuTi2/Ag(s,s) +Cu4Ti/Ag(s,s)+Cu(s,s)/QCr0.8铬青铜. 研究了工艺参数对接头组织和性能的影响. 结果表明,随着钎焊温度和保温时间的增加,钎缝中银铜共晶组织减少,钛铜化合物增多. 接头抗剪强度随钎焊温度的升高先增加后降低,在钎焊工艺参数为890 ℃/0 min时,获得最大抗剪强度449 MPa.保温时间的延长使得接头脆性钛铜化合物增多,接头性能下降,因此随保温时间延长接头抗剪强度显著降低.  相似文献   

9.
采用(Ti-Zr-Cu-Ni)+W复合钎料作为连接层,在连接温度930℃,保温时间5min的工艺参数下真空钎焊Cf/SiC复合材料与钛合金.利用SEM,EDS和XRD分析接头微观组织结构,利用剪切试验测试接头力学性能.结果表明,钎焊时复合钎料中的钛、锆与C/SiC复合材料反应,在Cf/SiC复合材料与连接层界面生成Ti3SiC2,Ti5Si3和少量TiC(ZrC)化合物的混合反应层,连接层的铜、镍与钛合金中的钛发生相互扩散,在连接层与钛合金界面形成Ti-Cu化合物过渡层.对钎焊接头进行900℃,保温60 min扩散处理后,连接层组织达到均一化,母材TC4合金侧过渡层增厚.扩散处理后接头强度为99 MPa,较钎焊接头强度65 MPa提高了52%.  相似文献   

10.
采用46.4%Ag-18.0%Cu-35.6%Ni(质量分数)复合粉末中间层实现了SiO2陶瓷和TC4钛合金的良好钎焊.使用扫描电镜、能谱分析和X射线衍射等方法对钎焊接头的界面组织和力学性能进行了研究.结果表明,SiO2陶瓷和TC4钛合金的连接接头成形良好,SiO2陶瓷/Ag-Cu/Ni/TC4钛合金钎焊接头的界面结构为:SiO2/Ti4O7+TiSi2/Ti2Cu+Ti2Ni/α-Ti+Ti2Cu+Ti2Ni过共晶组织/α-Ti+Ti2Cu+Ti2Ni过共析组织/α-Ti/TC4.当钎焊温度为970 ℃、保温时间为30 min时,使用Ag-Cu/Ni粉末中间层钎焊SiO2陶瓷与TC4钛合金的接头达到最高抗剪强度38 MPa.  相似文献   

11.
卞红  田骁  冯吉才  高峰  胡胜鹏 《焊接学报》2018,39(5):33-36,68
采用TiZrNiCu非晶钎料实现了TC4和Ti60异种钛合金的真空钎焊连接,利用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)等分析手段研究了钎焊工艺参数对接头界面组织结构及力学性能的影响. 结果表明,TC4/TiZrNiCu/Ti60钎焊接头的典型界面结构为:TC4/α-Ti+β-Ti+(Ti,Zr)2(Ni,Cu)/Ti60. 随着钎焊温度升高或保温时间延长,片层状α+β相逐渐填充整条钎缝,(Ti,Zr)2(Ni,Cu)相含量减少且分布更加均匀. 接头室温抗拉强度随钎焊温度或保温时间的增加均先增大后减小,在990 ℃/10 min钎焊条件下所获接头抗拉强度达到最大为535.3 MPa. 断口分析结果表明,断裂位于钎缝中,断裂方式为脆性断裂.  相似文献   

12.
以B-Ti57CuZrNi-S为钎料,在氩气保护气氛下对TC6/TC11钛合金进行高频感应钎焊工艺实验研究。采用光学显微镜(OM)、扫描电镜(SEM)及能谱分析(EDS)等测试方法,分析气体保护流量、流态以及工艺参数对焊接界面形貌、接头组织及元素分布的影响,并测试接头的抗拉强度。结果表明,钎焊界面主要由富Ti的β-Ti固溶组织和Cu-Ti、Ni-Ti以及(Cu,Ni)Ti/Zr组成的金属间化合物相组成。钎焊接头的抗拉强度随钎焊温度的升高或保温时间的延长,呈现先升高后降低的趋势,接头最高强度可达433MPa。TC6/TC11钛合金高频感应钎焊优化工艺参数带为:焊接温度910℃~930℃,保温时间120~150 s,Ar气保护流量1 MPa。  相似文献   

13.
采用Cu+B钎料分别在钎焊温度890~970℃,保温时间为10min;钎焊温度为930℃,保温时间0~30min条件下,钎焊A120,陶瓷与TCA合金.利用SEM,EDS和压剪试验研究接头界面组织及力学性能.结果表明,随钎焊温度升高或保温时间的延长,Ti2(Cu,Al)2O层增厚,紧邻其侧生成连续并增厚的Ti2(Cu,Al),Ti2(Cu,Al)含量增加;Ti+Ti2(Cu,Al)含量增加,尺寸变大,分布范围逐渐变宽并向TC4合金侧迁移,TCA合金侧过共析组织区变宽.钎焊温度低于950℃时,TiB晶须主要分布在Ti2Cu晶界处的AlCu2Ti上;当钎焊温度高于950℃时,AlCu2Ti相逐渐消失,TiB晶须主要分布于Ti2Cu上.当保温时间为10min,钎焊温度为950℃时,接头最大强度为96MPa;而当钎焊温度为930℃,保温时间为20min时,接头最大强度为83MPa.关键词:Al2O3陶瓷;TC4合金;钎焊参数;界面组织;抗剪强度  相似文献   

14.
段端志  肖冰  汪炜  丁晓阳 《焊接学报》2015,36(11):93-96
在Ni-Cr合金中加入A合金粉制成复合钎料,在加热温度1 050 ℃和保温时间30 min的工艺下进行金刚石磨粒的预钎焊处理试验,在加热温度810 ℃和保温时间4 min的烧结工艺下制备预钎焊磨粒复合节块. 测试预钎焊磨粒的静压强度和复合节块的抗弯强度,并分析预钎焊金刚石、复合节块的界面微结构. 结果表明,复合钎料与金刚石磨粒在预钎焊过程中形成化学结合界面,且对金刚石的热损伤较小;当磨粒浓度范围为10%~50%时,复合节块的抗弯强度均高于常规金刚石节块;预钎焊金刚石与金属胎体在烧结过程中形成冶金结合界面,复合节块界面结合强度高.  相似文献   

15.
采用纯金箔在1 333 K、不同保温时间(1~90 min)下钎焊连接石墨与Hastelloy N合金,研究了保温时间对接头内显微组织及力学性能的影响.结果表明,钎缝组织主要由金基固溶体、镍基固溶体及在其内弥散分布的Mo2C颗粒组成;近钎缝的Hastelloy N合金内的晶内和晶界位置分别析出细小的Mo2C及Mo6Ni6C颗粒.当保温时间提升至60 min时,抗剪强度随保温时间的延长变化不大;保温90 min后,由于临近钎缝侧的Hastelloy N合金内的晶内和晶界处分别析出大量细小的Mo2C和Mo6Ni6C颗粒形成了类似金属基复合材料组织,使得抗剪强度提高到34.1 MPa,与石墨强度相当.钎焊后接头内形成热膨胀系数梯度过渡结构导致了接头内低的应力水平,获得了高品质接头.文中开展的研究将为熔盐堆的建设提供必要的技术支撑.  相似文献   

16.
采用Ag-Cu钎料与Ti-Zr-Ni-Cu钎料,对TiAl与Ti合金进行了真空钎焊试验,主要研究了采用两种钎料时的界面反应以及钎焊温度对界面组织及性能的影响.研究发现,采用Ag-Cu钎料时界面结构为:Ti/Ti(Cu,Al)2/TiCux Ag(s,s)/Ag(s,s)/Ti(Cu,Al)2/TiAl,当钎焊温度T=1 223 K,保温时间t=10 min时接头的剪切强度达到223.3 MPa;采用Ti-Zr-Ni-Cu钎料时在界面出现了Ti2Ni,Ti(Cu,Al)2等多种金属间化合物,当钎焊温度T=1 123 K,保温时间t=10 min时接头的剪切强度达到139.97 MPa.  相似文献   

17.
采用非晶态Ti-Zr-Cu-Ni箔带钎料对SP700/TC4钛合金蜂窝结构进行钎焊工艺研究,分析了钎焊温度和保温时间对钎焊接头组织和力学性能的影响. 结果表明,当钎焊温度在875~890 ℃之间变化时,随温度升高,钎焊接头中元素扩散更为充分,接头拉脱强度持续增长;在890 ℃下保温2~4 h不同时长进行钎焊,接头的拉脱强度先逐渐增加,在保温时间为3.5 h时达到最大值,随后逐渐降低. 获得SP700/TC4钛合金蜂窝结构的较优钎焊工艺为890 ℃/3.5 h,该工艺下钎焊接头的室温拉脱强度、三点弯曲强度、平面压缩强度、L及W方向抗剪强度分别达到14.64,224.05,11.21,4.43及3.76 MPa,破坏部位均为TC4蜂窝芯.  相似文献   

18.
The brazing of Al2O3 to Nb was achieved by the method of transient liquid phase (TLP) bonding. Ti foil and Ni-5V alloy foil were used as interlayers for the bonding. The base materials were brazed at 1423-1573 K for 1-120 min. The results show that the shear strength of the joint first increases and then decreases with increasing holding time and brazing temperature. The joint interface microstructure and elements distribution were investigated. It can be concluded that a composite structure, in which the base metals are solid solution Nb(V) and Nb(Ti) reinforced by Ni3Ti, is formed when the brazing temperature is 1473 K and holding time 15 min, and a satisfactory joint strength can be achieved. The interaction of Ti foil and Ni-5V foil leads to the formation of liquid eutectic phase with low melting point, at the same time the combination of Ti come from the interlayer with O atoms from Al2O3 results in the bonding of Al2O3 and Nb.  相似文献   

19.
采用Al-Si-Mg钎料成功实现了5005铝合金与1Cr18Ni9Ti不锈钢的真空钎焊,借助扫描电镜、能谱分析仪和X射线衍射仪对焊后接头界面组织进行分析,同时对接头抗剪强度进行测试.结果表明,焊后接头界面结构从1Cr18Ni9Ti不锈钢侧到5005铝合金侧的界面组织依次为FeAl,FeAl3,FemAln+αAl.随着钎焊温度的升高或保温时间的延长,接头抗剪强度均呈现先升高后降低的变化趋势.当钎焊温度为580℃,保温时间为15 min时,接头抗剪强度达到最大值49 MPa.接头断裂形式受钎焊温度的影响,当钎焊温度较低时,接头断裂于铝合金侧氧化膜层及FemAln+αAl反应层;温度升高至580℃时,接头断裂于FemAln+αAl反应层中,接头抗剪强度最高.  相似文献   

20.
TiBw/TC4 composite was brazed to Ti60 alloy successfully using TiZrNiCu amorphous filler alloy, and the interfacial microstructures and mechanical properties were characterized by SEM, EDX, XRD and universal tensile testing machine. The typical interfacial microstructure was TiBw/TC4 composite/β-Ti + TiB whiskers/(Ti, Zr)2(Ni, Cu) intermetallic layer/β-Ti/Ti60 alloy when being brazed at 940 °C for 10 min. The interfacial microstructure evolution was influenced strongly by the diffusion and reaction between molten fillers and the substrates. Increasing brazing temperature decreased the thickness of brittle (Ti, Zr)2(Ni, Cu) intermetallic layer, which disappeared finally when the brazing temperature exceeded 1020 °C. Fracture analyses indicated that cracks were initialized in the brittle intermetallic layer when (Ti, Zr)2(Ni, Cu) phase existed in the brazing seam. The maximum average shear strength of joints reached 368.6 MPa when brazing was conducted at 1020 °C. Further increasing brazing temperature to 1060 °C, the shear strength was decreased due to the formation of coarse lamellar (α+β)-Ti structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号