首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过真空非自耗熔炼炉制备了低成本Ti-6Al-2.5V-1.5Fe-0.15O合金,利用Gleeble-1500D热模拟机,研究了其热加工参数为:变形温度875℃-1100℃、应变速率0.001s-1-1s-1,变形量为70%时的热变形行为,建立了Ti-6Al-2.5V-1.5Fe-0.15O合金考虑应变量的Arrhenius本构方程,基于动态材料模型建立热加工图。研究结果表明:变形温度升高,应变速率降低,流变应力降低。通过本构方程计算可得两相区平均热激活能为398.824KJ/mol,远大于纯钛自激活能,表明热变形软化机制与动态再结晶有关。单相区热激活能为210.93KJ/mol,略大于纯钛自激活能,以动态回复为主。通过热加工图确定两个失稳区,中等变形温度(950℃-1070℃)高应变速率(0.31-0.1s-1)易发生绝热剪切,结合热加工图确定适合的加工区间:应变速率为0.001-0.01s-1,变形温度为875℃-925℃。  相似文献   

2.
利用Gleeble-3800热模拟试验机,在变形温度为820~1060℃及应变速率为0.001~1 s~(-1)参数范围内对Ti-6Al-3Nb-2Zr~(-1)Mo钛合金进行等温恒应变速率压缩试验。建立了该合金的高温变形本构方程,得到两相区和单相区的表面激活能分别为764.714和126.936k J/mol。基于动态材料模型(DMM)和Prasad失稳准则建立了应变为0.4和0.7时的热加工图。分析加工图发现:Ti-6Al-3Nb-2Zr~(-1)Mo钛合金在840~1060℃,应变速率为0.001~0.1 s~(-1)之间主要发生动态再结晶(DRX)/球化,此区间变形时耗散率峰值51%分别出现在940℃/0.001 s~(-1)和880℃/1 s~(-1),其变形后微观组织演变机制与热加工图匹配较好,当变形发生在820℃,较高应变速率(≥1 s~(-1))下该合金加工时易发生流变失稳现象。  相似文献   

3.
通过热模拟实验研究了Al-5.8Cu-0.6Mg-0.6Ag-0.3Nd合金在变形温度360~520℃和应变速率0.001~10 s~(-1)下的热变形行为。计算了变形激活能,建立了变形本构方程,绘制了变形条件下的热加工图。结果表明,合金最适宜的加工变形条件为变形温度440℃和应变速率0.001s~(-1)。  相似文献   

4.
丁蓉蓉  周杰  李鑫  张建生  卢顺 《锻压技术》2019,44(3):133-139
通过Gleeble-3500热模拟试验机对温度范围为750~950℃、应变速率范围为0. 01~10 s~(-1)的多组Ti-5Al-5Mo-5V-1Cr-1Fe合金试样进行热压缩试验,利用得到的真应力-真应变曲线求解材料参数,建立了基于Arrhenius模型的本构方程,通过将所求本构方程计算出的流变应力与实测应力-应变曲线进行对比,验证了该方程的准确性;进而基于动态材料模型的加工图理论,分别绘制出应变为0. 1,0. 3,0. 5和0. 7时Ti-5Al-5Mo-5V-1Cr-1Fe钛合金的热加工图。结果显示:随着应变的增大,流变失稳区向中低温高应变速率区集中;在较小的应变量(0. 1~0. 3)时,安全区主要集中在中温低应变速率区(840~900℃,0. 4 s~(-1))和高温高应变速率区(910~950℃, 1 s~(-1));在较大应变量(0. 3~0. 7)时,安全区主要集中在低应变速率区(780~950℃,0. 3 s~(-1))和高温高应变速率区(910~950℃, 1 s~(-1))。因此,Ti-5Al-5Mo-5V-1Cr-1Fe钛合金高温变形时的安全热加工区域为:中温(840~900℃)低应变速率(0. 01~0. 3 s~(-1))区。  相似文献   

5.
《锻压技术》2021,46(6):212-220
在Gleeble-1500D热模拟实验机上对Ti-6Al-3Nb-2Zr-1Mo合金双态组织进行热模拟实验,变形温度为850~1050℃,应变速率为0.010~1.000 s~(-1),变形量为60%;根据不同条件下的应力峰值计算得其热变形激活能Q为786.609 kJ·m~(-1),并构建本构方程,最后在动态模型的基础上建立热加工图;利用金相显微镜(OM)和透射电子显微镜(TEM)观察其显微组织。实验结果表明,材料在热加工过程中会出现2个失稳区:变形温度为860~920℃、应变速率为0.075~0.330 s~(-1)和变形温度为940~1030℃、应变速率为0.010~0.058 s~(-1);1个加工稳定区:变形温度为920~1000℃、应变速率为0.048~0.280 s~(-1)。变形温度为900℃、应变速率为0.10 s~(-1)时,合金变形容易发生失稳;变形温度为1000℃、应变速率为0.050 s~(-1)时,合金会出现绝热剪切带,从而导致材料在使用过程中失效;变形温度为950℃、应变速率为0.100 s~(-1)时,合金的塑性和强度适中,疲劳强度和韧性提高,具有良好的综合力学性能。  相似文献   

6.
利用Gleeble-3800热模拟试验机对Ti-10V-2Fe-3Al合金进行了变形温度为850~1150 ℃,应变速率为0.01~10 s-1的等温热压缩实验。引入Zener-Hollomon参数,建立了该合金的热塑性变形双曲正弦本构方程。基于动态材料模型理论构建了该合金在不同应变下的热加工图。结果表明:Ti-10V-2Fe-3Al合金的流变失稳区主要发生在高应变速率下,热变形时适宜的变形安全区温度为1100~1150 ℃,应变速率为0.01~0.07 s-1。  相似文献   

7.
在温度为900~1060℃和应变速率为0.001~10s~(-1)的条件下,通过热模拟压缩实验研究TC11/Ti-22Al-25Nb双合金电子束焊接件的高温热变形行为。结合实验数据,建立双合金热变形中流变应力随应变速率和变形温度的本构方程。同时对变形过程中的激活能进行计算和分析得出,激活能随着应变的增加而逐渐减小。在应变为0.9时激活能为334kJ/mol。变形过程中耗散率η随着变形参数的变化而变化;当应变速率为0.01、0.1和1s~(-1)时,η随应变的增加而增加;而当应变速率为0.001和10 s~(-1)时,η随应变的增加而减小。通过热加工图分析可知,最大耗散率(η=0.51)出现在1060℃和0.1 s~(-1),在此条件下,可以从焊缝区域组织中观察到明显的动态再结晶现象。而当应变速率降低时,耗散率η急剧下降,在1060℃和0.001s~(-1)的变形条件下,η降低到0.02,变形机制以动态回复为主。当失稳系数ξ(ε)为负时,材料高温变形发生失稳。分析可知,应变速率为0.001~0.6s~(-1),变形温度为900~1060℃是双合金热变形的安全区域。  相似文献   

8.
通过Gleeble-3800热模拟试验机对25Cr3Mo3NiNbZr钢在变形温度1000~1250℃和变形速率0.001~10 s~(-1)下进行了高温压缩实验,研究了钢的热变形行为,得到了应力-应变曲线,并建立了流动应力本构方程和热加工图,同时观察了变形后的组织。结果表明,25Cr3Mo3NiNbZr钢在热压缩过程中的变形行为可用双曲正弦函数来描述,其平均变形激活能为415.6 kJ/mol。通过热加工图可以直观地看出热变形失稳区,并且获得了易于再结晶的参数范围,即变形温度为1050~1125℃,应变速率为0.001~0.01 s~(-1)。当应变速率为1 s~(-1)且变形温度从1000℃升至1250℃时,晶粒尺寸逐渐增加;当温度为1200℃且应变速率从0.001 s~(-1)增至10 s~(-1)时,晶粒尺寸逐渐减小。  相似文献   

9.
在Gleeble-1500热模拟机上对Ti-46.5Al-2.5V-1.0Cr-0.3Ni合金进行了热压缩实验,采用动态材料模型的加工图研究了其在1000~1200℃和0.001~1.0 s-1条件下的热变形行为.结果表明,Ti-46.5Al-2.5V-1.0Cr-0.3Ni合金在热变形时呈现两个微观机制不同的动态再结晶峰区,其中动态再结晶区域Ⅰ区:峰值效率为34%,峰值对应的温度和应变速率分别为1100℃和0.01 s-1;动态再结晶区域Ⅱ区:峰值效率为34%,峰值对应的温度和应变速率分别为1105℃和0.001 s-1.在温度低于1140℃、应变速率大于0.01 s-1范围内进行热加工时,由于热塑性变形过程中再结晶晶粒的不均匀长大,极易导致试样变形开裂.在温度1000~1130℃,变形速率大于0.02 s-1区域内,热压缩变形试样外表面剪切开裂趋势明显,易引起加工失稳.根据热加工图分析结果可知,TiAl合金热变形时应选择在动态再结晶Ⅰ区内进行.  相似文献   

10.
利用Gleeble-1500热模拟试验机对Ti-6Al-3Nb-2Zr-1Mo合金片层组织进行热压缩实验,实验温度为850~1050℃,应变速率为0. 01~1 s~(-1),变形量为60%。实验结果表明,热加工温度一定时,流变应力随变形量和应变速率的增加而急剧增加直至达到峰值,然后下降,最后趋于平缓,这是由加工硬化和动态再结晶所致。应变速率恒定时,随着变形温度的上升,流变应力随之降低。绘制应力-应变曲线,计算其热变形激活能Q为748. 845 k J·mol~(-1),构建本构方程,并在动态材料模型的基础上建立了热加工图。并通过加工图确定3个失稳区,变形温度为980~1030℃、应变速率为0. 3~1 s~(-1)时合金发生剪切,形成绝热剪切带。结合加工图,确定了适合的加工区域,即加工温度为970~1010℃,应变速率为0. 03~0. 07 s~(-1)。  相似文献   

11.
采用热压缩试验研究了含铜3.6%抗菌奥氏体不锈钢的热变形行为,分析了真应变0.69,温度900~1150℃,应变速率0.01~20 s~(-1)时钢的真应力-应变曲线。通过动力学计算了热变形激活能。依据动态材料模型构建了热加工图,并利用显微镜观察了不同变形下的微观组织。结果表明,计算的热变形激活能Q为376.017 kJ/mol。不同应变下失稳区在热加工图的位置不断变化。在低温、低应变速率区和中温高应变速率下,组织易出现局部流动失稳现象。峰值耗散因子在(1075~1150)℃/0.01 s~(-1)区域内,组织发生动态再结晶,为较优的热加工范围。  相似文献   

12.
通过放电等离子烧结制备Ti-48Al-2Cr-2Nb-0.2W(摩尔分数,%)/20%(体积分数)Ta金属基复合材料。在温度1050~1200℃及应变速率1×10~(-3)~1 S~(-1)的条件下,通过热压缩试验研究复合材料的变形行为。建立包含真应变变量的本构方程。不同应变下,复合材料的激活能Q值为240~280 kJ/mol,低于纯TiAl的激活能。在动态材料模型的基础上,建立不同应变下的加工图,得到热加工最优参数为:1050~1100℃和0.005~0.01s~(-1)。研究复合材料在变形过程中的显微组织演变。结果表明,动态再结晶在变形过程中起着重要作用。  相似文献   

13.
采用Gleeble-1500D热模拟试验机,在温度为550~900℃,应变速率为0.001~10 s~(-1)的条件下对Cu-7Ni-7Al-2Fe-2Mn-0.5Ti合金的热变形行为进行研究。分析应变速率和变形温度对合金热变形组织的影响,建立合金Cu-7Ni-7Al-2Fe-2Mn-0.5Ti的热变形本构方程。结果表明:Cu-7Ni-7Al-2Fe-2Mn-0.5Ti合金高温热变形时的热变形激活能Q为318883 J·mol-1,合金的流变应力随变形温度的升高和应变速率的降低而降低。当变形温度较高、应变速率较低时,合金容易发生动态再结晶。  相似文献   

14.
利用Gleeble-3800热模拟试验机,在温度为950~1150℃、应变速率为0.01~10 s~(-1)、变形量为60%条件下,研究汽轮机叶片用GY200镍基合金的高温塑性变形及动态再结晶行为,并绘制了合金的热加工图。结果表明:GY200合金的真应力–应变曲线具有动态再结晶特征,峰值应力随变形温度的降低或应变速率的升高而增加,发生动态再结晶的临界应变随温度增加而降低。在真应力–应变曲线的基础上,建立了材料热变形本构方程,其热激活能为353.792 kJ/mol,表明利用W替代合金中的Mo后,降低了合金的热激活能。合金的最佳热加工的温度区间为1000~1150℃,应变速率0.01~0.1 s~(-1),效率值达到0.3以上。  相似文献   

15.
采用Gleeble-3500热模拟试验机研究Ti-22Al-24Nb合金在温度900~1110℃和应变速率0.01~10 s~(-1)条件下的热变形行为。分析了该合金的高温流变应力曲线特性和不同相区的热变形激活能及变形机制,并根据基于Prasad和Murty失稳判据下的加工图及相应的组织特征优化了该合金的热成形工艺参数。结果表明,Ti-22Al-24Nb合金的流变应力对热成形工艺参数敏感;其在(α_2+B2)两相区的主要变形机制为晶界滑移,对应的变形激活能为603.56 kJ/mol,而B2单相区的变形激活能为406.25kJ/mol,其变形主要以动态回复和动态再结晶的变形机制为主。根据这两种加工图的比较和组织观察可知,Ti-22Al-24Nb合金选择基于Prasad失稳判据下的加工图更为合理;其对应的主要失稳区为900~990℃、0.2~10 s~(-1)和1035~1095℃、1~10 s~(-1),且失稳区所预测的组织中主要存在绝热剪切带和局部流变失稳现象;而动态再结晶及胞状亚结构的组织易出现在η峰区,表明该合金较优的热力参数区间是990~1035℃、0.01~0.03 s~(-1),1040~1090℃、0.02~1 s~(-1)和1090~1110℃、0.01~0.18 s~(-1)。  相似文献   

16.
对Monel K-500合金对试样进行了时效处理,让其析出大量碳化物。使用Gleeble-3800热模拟机对Monel K-500合金试样进行了高温压缩试验,研究了该合金在变形温度850~1150℃,应变速率0.01~10 s~(-1)时的流动应力行为。建立了该合金的热压缩本构方程。根据试验数据建立了真应变0.8的热加工图。使用光学显微镜进行了组织分析,确定了合金压缩变形的加工"安全区"和"失稳区"。结果表明:在变形温度850℃、应变速率0.1 s~(-1)时合金开始动态再结晶;合金的热变形激活能为375.32611 k J/mol。合理的热加工参数是:应变速率0.1~0.5 s~(-1)、变形温度1000~1150℃。此时耗散功率在40%左右,再结晶充分,组织细小、均匀。  相似文献   

17.
依据热压烧结制备Ti-22Al-25Nb合金热模拟压缩所得实验数据,研究合金在热变形温度为975~1075°C、应变速率为0.001~1s~(-1)条件下的热变形行为。通过对数据的分析,建立包含Z参数模型、动态再结晶临界模型与动态再结晶动力学模型的新型本构关系模型。实验结果表明:Ti-22Al-25Nb合金的热变形激活能为410.172 kJ/mol,且临界应变与峰值应变之间的比值为0.67。此外,所建立的本构关系模型的预测值在应变速率为0.1 s~(-1)、应变量小于0.1条件下与实验值相差较大,但整体上流动应力水平预测值与实验值吻合较好。并采用EBSD技术对动态再结晶动力学模型的预测精度进行分析。  相似文献   

18.
在Gleeble-3500热模拟试验机上对圆柱体5083铝合金试样进行温度为300~500℃、应变速率为0.001~1 s~(-1)条件下的热压缩试验。对实验获得的真应力应变曲线进行摩擦修正,依据摩擦修正后的应力应变曲线计算本构方程,采用包含Zener-Hollomon参数的本构方程描述摩擦修正后的5083铝合金流变应力行为,其热变形激活能为164.17 kJ/mol。根据摩擦修正后的真应力-应变曲线绘制热加工图,随着真应变的增加,失稳区域向着高应变速率、高变形温度区域扩展,5083铝合金适宜热变形工艺参数:变形温度为400~500℃、变形速率为0.01~0.1s~(-1)与340~450℃、变形速率为0.001~0.01 s~(-1)。随着变形温度升高与应变速率降低,晶粒内位错密度减少,主要软化机制逐渐由动态回复转变为动态再结晶。  相似文献   

19.
采用带有加热装置的MTS810液压伺服拉伸试验机,研究了ZE42镁合金板材的高温拉伸变形行为,应变速率的取值为0.000 3~0.17s~(-1),变形温度为300~450℃,采用Z参数和材料动态模型(DMM)建立了本构方程和热加工图。结果表明,ZE42镁合金板材热拉伸变形的平均激活能值为161kJ/mol,避开加工失稳区,ZE42镁合金板材热拉伸的稳态流变温度区间和应变速率区间分别为380~440℃和0.000 3~0.01s~(-1)。  相似文献   

20.
采用Gleeble-3800热模拟试验机对TA15钛合金进行了热压缩,获得了TA15钛合金在750~980℃、应变速率在0.001~1 s~(-1)的应力-应变曲线。基于TA15钛合金的压缩试验数据建立了高温热变形本构方程和热加工图,并结合热加工图分析了TA15钛合金热变形组织,确定了TA15钛合金的合理热加工参数范围。结果表明,TA15钛合金本构方程为双曲正弦函数,可由Z参数表示,其热变形激活能为523.374 k J/mol。TA15钛合金高温热变形最佳工艺参数为变形温度875~980℃和应变速率0.01~0.10 s~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号