首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An AZ91D magnesium alloy was treated using duplex techniques of laser surface melting (LSM) and plasma electrolytic oxidation (PEO). The microstructure, composition and corrosion behavior of the laser melted surface, PEO coatings, LSM–PEO duplex coatings as well as the as-received specimen were characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) and electrochemical corrosion tests, respectively. Especially, the effect of LSM pre-treatment on the microstructure, composition and corrosion resistance of the PEO coatings was investigated. Results showed that the corrosion resistance of AZ91D alloy was marginally improved by LSM due to the refinement of grains, redistribution of β-phase (Mg17Al12) and increase of Al on the surface. Both the PEO and duplex (LSM–PEO) coatings improved significantly the corrosion resistance of the AZ91D alloys, while the duplex (LSM–PEO) coating exhibited better corrosion resistance compared with the PEO coating.  相似文献   

2.
Two types of PEO coatings were produced on AM50 magnesium alloy using pulsed DC plasma electrolytic oxidation process in an alkaline phosphate and acidic fluozirconate electrolytes, respectively. The phase composition and microstructure of these PEO coatings were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion behaviour of the coated samples was evaluated by open circuit potential (OCP) measurements, potentiodynamic polarization tests, and electrochemical impedance spectroscopy (EIS) in neutral 0.1 M NaCl solution. The results showed that PEO coating prepared from alkaline phosphate electrolyte consisted of only MgO and on the other hand the one formed in acidic fluozirconate solution was mainly composed of ZrO2, MgF2. Electrochemical corrosion tests indicated that the phase composition of PEO coating has a significant effect on the deterioration process of coated magnesium alloy in this corrosive environment. The PEO coating that was composed of only MgO suffered from localized corrosion in the 50 h exposure studies, whereas the PEO coating with ZrO2 compounds showed a much superior stability during the corrosion tests and provided an efficient corrosion protection. The results showed that the preparation of PEO coating with higher chemical stability compounds offers an opportunity to produce layers that could provide better corrosion protection to magnesium alloys.  相似文献   

3.
Anodic coatings on magnesium ZE41 alloy were formed by DC plasma electrolytic oxidation (PEO) in spark regime in solution composed of NaOH, Na2SiO3 and KF. The positive effect of poly(ethylene oxide) addition into the anodizing electrolyte on PEO process, anodic film porosity and its protective performance was described. Anodic films were sealed with hybrid epoxy-silane formulation. The corrosion behavior of the coated ZE41 was studied through electrochemical impedance spectroscopy (EIS) in 0.6 M NaCl solution. Resulting duplex PEO/epoxy-silane coating provides good protective performance without significant signs of corrosion during 1 month of immersion test.  相似文献   

4.
在TC4合金表面制备4种典型等离子体电解氧化(PEO)涂层,研究电解质组成对PEO涂层腐蚀行为和摩擦学性能的影响。结果表明,PEO涂层的腐蚀行为和摩擦学性能与电解质成分密切相关。在含NaH2PO2的电解液中制备的PEO涂层由于内氧化膜较致密而具有最好的耐蚀性能,而在含NaAlO2的电解液中制备的PEO涂层由于含有Al2O3而具有最好的摩擦学性能。为制备具有良好耐蚀性和耐磨性的PEO涂层,以NaH2PO2和NaAlO2为电解液主要成分制备了复合PEO涂层。  相似文献   

5.
Plasma electrolytic oxidation (PEO) coatings in the aluminate-silicate-based mixture electrolyte solution with different duty cycles were successfully applied on Mg alloy. The corrosion behavior of the samples was evaluated by water contact angle test, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and immersion tests. Hydrophobic PEO coating could be obtained by adjusting the duty cycle of the applied electric signal. This coating considerably diminished the Mg dissolution and could enhance the impedance values of Mg alloy in 3.5 wt % NaCl solution. However, the surface of other PEO coated samples showed more hydrophilic properties compared to that of the uncoated sample. Dense structure of the modified PEO multiphase (including Mg2SiO4, MgO and MgAl2O4 phases) coating and also its appropriate thickness provided an effective barrier to remarkably delay corrosive solution penetration into the PEO coating. This phenomenon led to major decrease in anodic current density of alloy in chloride solution.  相似文献   

6.
Ceramic-WC coatings were prepared on AZ31 B Mg alloy by plasma electrolytic oxidation (PEO) from a phosphate based bath containing suspended tungsten carbide nanoparticles at various process times. Scanning electron microscope results indicated that increase of coating time and incorporation of tungsten carbide into the ceramic coating during the PEO process led to a decrease in the number and diameter of coating pores. Phase analysis showed that the nanocomposite coating was composed of MgO, Mg3(PO4)2 and WC. Tribological properties and corrosion behaviour of uncoated AZ31 B Mg alloy and ceramic coatings were evaluated using a pin-on-disc tribometer and potentiodynamic polarisation technique in 3.5% NaCl solution, respectively. The wear and electrochemical tests showed that wear and corrosion resistance of ceramic-WC nanocomposite coatings were better than ceramic only ones. In addition, wear and corrosion behaviour of coatings improved with increasing the coating time.  相似文献   

7.
Plasma electrolytic oxidation (PEO) coatings were formed in a phosphate–silicate-based electrolyte containing K2ZrF6 on an AZ31 Mg alloy. The physical and chemical properties of the coatings were investigated using scanning electron microscopy, atomic force microscopy, X-ray diffraction (XRD), potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). The results showed that the thickness of the PEO coatings increased linearly with increased treatment times. Additionally, the micropores on the coating surfaces increased in size, but decreased in porosity with increased PEO treatment time. The XRD results showed that the coatings were mainly composed of MgO, MgF2, MgSiO3, and ZrO2, and the electrochemical tests revealed that the corrosion resistance of the coatings increased with increased treatment time. Besides, the EIS results correlated well with the potentiodynamic polarization test results.  相似文献   

8.
In order to improve the wear and corrosion resistance of AZ31 magnesium alloy, a magnetron-sputtered Al layer with a thickness of 11 μm was firstly applied on the alloy, and then treated by plasma electrolytic oxidation (PEO) in an aluminate and silicate electrolytes, respectively. The performance of PEO coatings was investigated by dry sliding wear and electrochemical corrosion tests. The aluminate coating exhibits excellent wear resistance under both 10 and 20 N loads. The silicate coating only shows low wear rate under 10 N, but it was destroyed under 20 N. Corrosion tests show that the Al layer after magnetron sputtering treatment alone cannot afford good protection to the Mg substrate. However, the duplex layer of PEO/Al can significantly improve the corrosion resistance of AZ31 alloy. Electrochemical tests show that the aluminate and silicate coatings have corrosion current densities of ∼1.6×10−6 and ∼1.1×10−6 A/cm2, respectively, which are two orders lower than that of the un-coated AZ31 alloy. However, immersion tests and electrochemical impedance spectroscopy (EIS) show that the aluminate coating exhibits better long-term corrosion protection than silicate coating.  相似文献   

9.
The aim of this work is to study the structure and the corrosion resistance of the plasma electrolytic oxidation ZrO2 ceramic coatings on Mg alloys. The ceramic coatings were prepared on AZ91D Mg alloy in Na5P3O10 and K2ZrF6 solution by pulsed single-polar plasma electrolytic oxidation (PEO). The phase composition, morphology and element distribution in the coating were investigated by X-ray diffractometry, scanning electron microscopy and energy distribution spectroscopy, respectively. The results show that the coating thickness and surface roughness were increased with the increase of the reaction time. The ceramic coatings were of double-layer structure with the loose and porous outer layer and the compact inner layer. And the coating was composed of P, Zr, Mg and K, of which P and Zr were the main elements in the coating. P in the coating existed in the form of amorphous state, while Zr crystallized in the form of t-ZrO2 and a little c-ZrO2 in the coating. Electrochemical impedance spectra (EIS) and the polarizing curve tests of the coatings were measured through CHI604 electrochemical analyzer in 3.5% NaCl solution to evaluate the corrosion resistance. The polarization resistance obtained from the equivalent circuit of the EIS was consistent with the results of the polarizing curves tests.  相似文献   

10.
Mg-6 wt.%Al-1 wt.%Zn alloy powders were produced by gas atomization, and subsequently compacted and sintered under various conditions of temperature, time, and pressure. The bulk Mg-6 wt.%Al-1 wt.%Zn alloy was coated by the plasma electrolytic oxidation (PEO) method. The optimum condition of compaction and sintering for PEO coatings was established based on the investigation of microstructure, microhardness, and corrosion properties of coatings which were compared to those of cast Mg-6 wt.%Al alloy. The coatings on Mg-6 wt.%Al and Mg-6 wt.%Al-1 wt.%Zn alloys consisted of MgO, MgAl2O4, and Mg2SiO4. The Mg-6 wt.%Al-1 wt.%Zn alloy compacted at room temperature for 10 min and sintered at 893 K for 3 h showed the most porous and nonuniform coating layer because the coatings had grown through grain boundaries that resulted from poor bonding between powder particles in the substrate. However, the coated Mg-6 wt.%Al-1 wt.%Zn alloy hot-compacted at 593 K for 10 min had the thickest coating layer and the highest microhardness. In addition, it demonstrated the best corrosion resistance as verified by polarization curves in 3.5% NaCl solution.  相似文献   

11.
In this paper plasma electrolytic oxidation (PEO) is examined as a potentially beneficial post-deposition treatment for Al-5 wt.%Mg coatings deposited onto Ti alloy substrates using Ion Vapour Deposition (IVD), with a view to replacing toxic hexavalent chromate conversion treatments and at the same time enhancing the barrier protection properties of such IVD coatings. The aqueous corrosion behaviour of PEO layers formed on IVD coatings was evaluated by means of potentiodynamic polarisation scans, open circuit potential measurements and electrochemical impedance spectroscopy. Normally, IVD aluminium-based coatings require a post-coat shot peening treatment to densify the coating structure; however it was found that PEO layers could be formed successfully on as-deposited IVD coatings deposited onto Ti alloy substrates, providing a cost effective process to improve corrosion behaviour. PEO treatment provides unique improvements in the corrosion resistance of IVD coatings; the PEO layer possesses effective anticorrosion properties in aqueous environments containing Cl ions. A more positive corrosion potential, lower corrosion current and increased polarisation resistance were recorded for PEO layers, compared to traditional chromate conversion treatments.  相似文献   

12.
Plasma electrolytic oxidation (PEO) of AZ91 Mg alloys was performed in ZrO2 nanoparticles containing Na2SiO3-based electrolytes. The phase composition and the microstructure of PEO coatings were analyzed by x-ray diffraction and scanning electron microscopy followed by energy dispersive spectroscopy. Pitting corrosion properties of the coatings were investigated using cyclic polarization and electrochemical impedance spectroscopy tests in a Ringer solution. The results showed the better pitting corrosion resistance of the composite coating, as compared to the oxide one, due to the thickened inner layer and the decrease in the surface defects of the composite coating. Also, the PEO process decreased the corrosion current density from 25.06 µA/cm2 in the Mg alloy to 2.7 µA/cm2 in the oxide coating and 0.47 µA/cm2 in the composite coating.  相似文献   

13.
目的 考察乙二醇-氟化铵电解液中氟化铵浓度对镁合金表面微弧氧化制备氟化物膜层结构和性能的影响,提高镁合金氟化物膜层的耐腐蚀性能。方法 在含不同浓度NH4F的EG-NH4F电解液中,采用微弧氧化的方法制备氟化物膜层,NH4F质量浓度分别为40、60、80、100、120 g/L。通过扫描电子显微镜(SEM)、X射线能量色散谱仪(EDS)和X射线衍射仪(XRD),对膜层表面微观形貌和成分组成进行分析,并通过电化学测试表征了膜层的腐蚀防护性能,通过盐雾试验评估了膜层长效防腐蚀行为,通过SEM和EDS表征了腐蚀形貌和腐蚀产物。结果 在EG-NH4F中制备膜层的物相组成主要是MgF2。随着NH4F浓度的提高,微弧氧化的起弧电压与工作电压均逐渐减小,膜层中氟含量逐渐增加,膜层的孔径减小,孔数量分布更加均匀,膜层表面粗糙度降低。质量浓度为100 g/L NH4F的膜层自腐蚀电流密度(Jcorr)为2.226×10‒7 A/cm2,较镁合金基材降低了1个数量级,极化电阻Rp增大到90.156 kΩ.cm2,其阻抗模量|Z|f=0.01 Hz=8.55×105 Ω.cm2,与镁合金基材的阻抗模量|Z|f=0.01 Hz=8.86×102 Ω.cm2相比,提高了3个数量级。结论 微弧氧化处理能够显著改善AZ31镁合金的腐蚀防护性能。NH4F浓度的增加有利于提高膜层的耐腐蚀性能,质量浓度为100 g/L NH4F的膜层耐腐蚀性能最优。  相似文献   

14.
Calcium phosphate coatings (Ca/P = 1.61) containing magnesium oxide MgO and hydroxyapatite Ca10(PO4)6(OH)2 accelerating the growth of bone tissue have been prepared by the method of plasma electrolytic oxidation (PEO) on MA8 magnesium alloy. The phase and element compositions, morphology, and anticorrosion properties of coatings were investigated. Such PEO layers were found to essentially reduce the corrosion rate of magnesium alloy (polarization resistance being increased by two orders). This makes it possible to consider the formed PEO coatings as likely anticorrosion layers for medical bioresorbable implants.  相似文献   

15.
Plasma electrolytic oxidation (PEO) coatings were formed in silicate based electrolytes without and with the addition of sodium tungstate on AA?6063 aluminium alloy. Microstructure, composition and corrosion resistance of PEO coatings were investigated by scanning electron microscopy, X-ray diffraction and electrochemical impedance spectroscopy and potentiodynamic polarisation test respectively. The effects of additive sodium tungstate were examined. The results showed that the additive containing PEO coatings were of dense structure with additional phase (WO3) and of less cracks than the additive free PEO coating. In addition, additive containing coatings were of better corrosion resistance than the additive free PEO coating, which was confirmed by electrochemical impedance spectroscopy and potentiodynamic polarisation tests. Furthermore, long time immersion test revealed that the PEO coated alloy with the addition of 12?g?L??1 sodium tungstate maintained high impedance over 82?h in 3.5?wt-%NaCl, while the PEO coating without additive was unable to protect the substrate after such long time immersion.  相似文献   

16.
Blue and white ceramic coatings have been successfully fabricated on the surface of Mg–Li alloys by plasma electrolytic oxidation (PEO) in an alkaline polyphosphate electrolyte with and without addition of titania sol. The influence of titania sol on the surface morphology, microstructure, phase composition, chemical composition, corrosion resistance, mechanical and tribological behavior of ceramic coatings was scrutinized by means of scanning electron microscopy (SEM), thin-film X-ray diffraction (TF-XRD), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization, nanoindentation measurements, and ball-on-cylinder friction testing. The blue ceramic coating containing MgO, TiO2 and Ti2O3 phase exhibits better anticorrosion and tribological performance due to its higher nanohardness and lower friction coefficient.  相似文献   

17.
Optical emission spectroscopy, fast video imaging and coating characterization are employed to investigate AC plasma electrolytic oxidation (PEO) of magnesium alloys. The findings revealed initiation and gradual increase in the number of discharges after 2-4 ms of each anodic pulse once a critical voltage was reached. No discharges were observed during the cathodic half-cycles. The lifetimes of discharges were in the range of 0.05-4 ms. A transition in the voltage-time response, accompanied by a change in the acoustic and optical emission characteristics of discharges, was associated with the development of an intermediate coating layer with an average hardness of 270-450 HV0.05. The coatings grew at a rate in the range 4.0-7.5 µm min− 1, depending on the substrate composition. Regardless of the substrate, the coatings consisted of MgO and Mg2SiO4, with incorporation of alloying element species. Electrolyte species were mainly present in a more porous layer at the coating surface, constituting 20-40% of the coating thickness. A thin barrier layer consisting of polycrystalline MgO was located next to the alloy. The corrosion rate of the magnesium alloys determined using potentiodynamic polarization in 3.5 wt.% NaCl was reduced by 2-4 orders of magnitude by the PEO treatment.  相似文献   

18.
The effect of hard anodic oxide and plasma electrolytic oxide coatings on the fatigue strength of 7475-T6 aluminium alloy has been investigated. The coated aluminium alloy was tested using constant load uniaxial tensile fatigue machine. Hard anodising led to an appreciable reduction in the fatigue strength of 7475-T6 alloy of about 75% for a 60 μm thick coating. Further, plasma electrolytic oxidation resulted in reduction of the fatigue strength of about 58% for a 65 μm thick oxide coating. The decrease in fatigue strength of the hard anodic oxide coatings was associated with the stress concentration at the microcracks in the coating. The better fatigue performance of the PEO coatings was attributed to the development of the compressive residual internal stress within the coatings. The reduction in the fatigue strength of the PEO coatings as compared to the uncoated material was associated with the development of the tensile residual internal stress within the substrate. This may cause an early crack initiation in the substrate adjacent to the coating.  相似文献   

19.
Titania-based composite coatings were prepared by plasma electrolytic oxidation (PEO) treatment of Ti6Al4V alloy in electrolyte with α-Al2O3, Cr2O3 or h-BN microparticles in suspension. The microstructure, composition of PEO composite coatings were analyzed by SEM, EDS and XRD. The wear resistance of composite ceramic coatings was studied by ball-on-disk wear test at ambient temperature and 300 °C. The results showed that the addition of microparticles accelerated the growth rate of PEO coating and changed the microstructure and composition of PEO coating. PEO coating was porous and mainly composed of rutile-TiO2, anatase-TiO2 and Al2TiO5. PEO/α-Al2O3 (Cr2O3 or h-BN) composite coating only had small micropores and appeared some α-Al2O3 (Cr2O3 or h-BN) phase. Besides, the addition of α-Al2O3 (Cr2O3 or h-BN) microparticles greatly improved the wear resistance of PEO coating. At ambient temperature, abrasive wear dominated the wear behavior of PEO coating, but abrasive wear and adhesive peel simultaneously happened at 300 °C. Whether at ambient temperature or 300 °C, PEO composite coating had better wear resistance than PEO coating. Besides, PEO/h-BN composite coating outperformed other composite coatings regardless of the temperature.  相似文献   

20.
在2A12铝合金表面制备了微弧氧化膜层,按照国家军用标准霉菌测试方法对微弧氧化膜层的耐腐蚀性能进行了测试,通过扫描电镜(SEM)、X射线衍射分析(XRD)对铝合金基体及微弧氧化膜层霉菌腐蚀前后的微观结构、相组成进行了表征。结果表明,未经过微弧氧化处理的铝合金表面有少量的霉菌生长,表面产生了一定数量的点蚀坑,长霉等级为1级。经过微弧氧化处理试样表面未发现霉菌生长,长霉等级为0级。微弧氧化处理可以有效提高铝合金表面耐霉菌腐蚀性能,扩大其应用范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号