首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
综述了NdFeB粘结磁体粉末材料制备技术研究的主要进展.介绍了NdFeB粘结磁粉的主要制备方法及其工艺特点,讨论了不同制备工艺以及添加微量合金元素对NdFeB合金磁粉材料微观组织结构和磁性能的影响.在此基础上,指出了进一步提高NdFeB粘结磁体材料磁性能的可能途径及今后研究工作的方向.  相似文献   

2.
注射成型粘结NdFeB磁体的研发进展   总被引:4,自引:0,他引:4  
简述注射成型粘结NdFeB磁体的制备工艺,分析了磁粉、粘结剂、取向磁场和工艺参数对注射成型粘结NdFeB磁体磁性能的影响以及该磁体的性能状况,并概述了粘结NdFeB磁体的产业发展及其应用领域,最后提出注射成型粘结NdFeB磁体的开发重点。  相似文献   

3.
采用温压成型的方法制备各向同性粘结NdFeB磁体,主要研究了成型温度、成型压力对磁体密度、磁性能及力学性能的影响。结果表明,采用温压成型工艺,可以在较低的压力下压制出高致密度的粘结NdFeB磁体。磁体磁性能随压制力的增加呈现先升高后降低的变化规律;温度越高,磁性能达到极值所需的压力越小。经过工艺参数优化后所制备的粘结NdFeB磁体获得了较高的磁性能与力学性能,其磁能积、抗压强度分别为88kJ/m3与192MPa。  相似文献   

4.
电泳涂层对粘结磁体的防护作用   总被引:1,自引:0,他引:1  
研究了湿热试验条件下粘结Nd-Fe-B磁体的腐蚀行为及电泳涂层对磁体的防护作用。结果表示粘结Nd-Fe-B磁体的耐腐蚀性虽然优于烧结Nd-Fe-B磁体,但仍不能满足使用要求。金相观察表明电泳涂装后在磁体表面形成了厚度均匀的致密保护层,该涂层对基体具有很好的附着性,且涂层连续、均匀、有效地阻止了腐蚀介质的渗入。  相似文献   

5.
采用温压工艺制备粘结NdFeB磁体,发现温压技术可以有效地提高牯结磁体的密度.改善磁体磁性能.研究表明:温压效果与温压温度的选择和温压压力密切相关.通过对温压机理的分析,发现最佳温压温度由粘结剂的软化点、粘度和固化点三个因素共同决定.而随着温压压力的升高,粘结NdFeB磁体的密度和磁件能增大,并在压力为650 MPa时得到了粘结磁体磁能积的最大值(50.43 kJ/m~3).  相似文献   

6.
提高烧结NdFeB磁体的耐腐蚀性能一直是该领域研究的热点之一.添加金属元素和涂覆常规镀层虽然有效,但并未很好地解决NdFeB磁体耐腐蚀性差的难题.本文对常规涂层用于烧结NdFeB永磁体防腐蚀的现状进行了分析,提出以化学镀Ni-P镀层为过渡层,采用化学镀/溶胶-凝胶复合法在NdFeB磁体表面形成Ni-P/TiO2复合膜,以提高烧结NdFeB磁体耐蚀性能,拟为研发新型的烧结NdFeB磁体涂层提供参考.  相似文献   

7.
粘结NdFeB系磁体概述   总被引:11,自引:1,他引:11  
本文按照磁性材料的组成将粘结NdFeB磁体分为单一型磁体和复合型磁体两大类,并分别作了介绍,而且从原料(磁粉,粘结剂和助剂)种类及作用,成型工艺和各种防腐方法等方面进行了综述,认为复合型磁体,复合涂层是改进磁体磁性能,温度稳定性和耐腐蚀性的有效方法。  相似文献   

8.
粘结剂作为粘结NdFeB磁体制备过程中的重要组成部分,其作用是提高磁粉颗粒的流动性和粘结强度,保证产品的力学性能和磁性能的稳定。采用理论与实验相结合的方法,研究了粘结剂含量对粘结NdFeB磁体力学性能和磁性能的影响。在此基础上,制备了高性能粘结NdFeB磁体。利用扫描电子显微镜(SEM)对磁体的结构和形貌进行了表征。在NIM-200C磁滞回线仪和电子万能试验机(AG-X plus)上分别测定了环形粘结NdFeB磁体(RSM)的磁性能和力学性能。结果表明,当粘结剂含量为3%(质量分数)时,粘结NdFeB磁体密度最高(5.59 g/cm3),抗压强度最高(159 MPa),磁性能最佳。  相似文献   

9.
张帅  刘树峰  鲁飞  李慧  刘小鱼 《表面技术》2022,51(12):208-216
目的 采用大气等离子喷涂工艺在烧结NdFeB磁体表面制备Al防护涂层,实现NdFeB磁体防护强化。方法 通过不同喷涂工艺制备Al涂层,采用扫描电子显微镜观测涂层表面、截面形貌和堆积厚度,利用垂直拉拔法测试最佳工艺下涂层的结合强度。喷涂不同厚度Al防护涂层,采用电化学工作站和中性盐雾腐蚀试验研究涂层的耐腐蚀性能,利用脉冲磁场磁强计对比分析喷涂Al涂层厚度对磁体磁性能的影响。结果 喷涂电流从400 A提高至600 A,当喷涂电流为500 A时,涂层表面致密,无明显溅射堆垛和未熔颗粒;喷涂30次,涂层厚度达到40 μm,结合强度达15.5 MPa。等离子喷涂Al防护涂层对NdFeB基体构成牺牲阳极保护,不同厚度涂层的自腐蚀电位无明显差异,约为–1.1 V,自腐蚀电流密度相对NdFeB基体降低了2个数量级。随着涂层厚度的增加,Al防护涂层的耐腐蚀性能逐步提高,喷涂厚度的70 mm的Al防护涂层耐中性盐雾腐蚀时间最高可达300 h以上。随着Al涂层厚度从0 μm增加至70 μm,磁体矫顽力略有提升,剩磁降低为原始样的2.0%~4.26%。结论 等离子喷涂技术可极大改善NdFeB磁体的耐腐蚀性能,为NdFeB防护的工业应用提供了新思路。  相似文献   

10.
1 前 言 1984年,日本住友特殊金属公司的佐川真人与美国通用汽车公司的J. Croat先生几乎同时发表了有关NdFeB磁体的论文。NdFeB磁体的出现促进了电子器件的高性能化和小型化,而这种发展又促进了NdFeB磁体的进一步发展。由于这种相互作用,NdFeB磁体的市场需求迅猛增长。目前全球年产NdFeB烧结磁体1万t,粘结磁体近2000t。 受NdFeB磁体在工业上巨大成功的影响,稀土类磁体的研究变得非常活跃。这些年来,许多研究者深入地进行了NdFeB磁体主相R2Fe14B的基础研究,并对NdFeB材料之后下一代磁体材料进行了许多有益的探索。 本文…  相似文献   

11.
本文研究了磁粉的粒度分布以及不同抗氧化剂的加入对注射成型NdFeB粘结磁体密度和磁性能的影响。结果表明,磁粉的粒度分布影响熔体的粘度,适当的粒度分布可以提高磁粉的松装密度和磁体的密度,获得高性能的粘结磁体;抗氧化剂的加入,很好地解决了NdFeB粘结磁体在湿热环境下易氧化生锈的问题,大大提高了磁体的抗氧化性能。  相似文献   

12.
钕铁硼烧结磁体耐蚀性差,限制了其应用领域的扩展,因而改善磁体耐蚀性已成为一个重要的研究课题.本文介绍了钕铁硼烧结磁体在湿热环境下的腐蚀机理,从磁体的微观结构和成分方面分析了失重问题并且提出了相应的减少失重的措施.  相似文献   

13.
烧结NdFeB永磁材料腐蚀与防护的研究现状及挑战   总被引:1,自引:0,他引:1  
烧结NdFeB永磁材料的腐蚀敏感性限制了其在复杂工况下的应用,提高磁体的抗腐蚀能力和开发优异的防护涂层是领域发展的重点方向。尽管针对长寿命NdFeB磁体的探索已经做了大量工作,但是从技术工艺到基础理论,系统地研究NdFeB磁体的腐蚀问题仍然比较少,这一方面是由于材料腐蚀与防护的基础研究滞后于磁性能方面的研究工作,另一方面还与市场对材料品质要求的不断提高及多样化需求有较大关系。本文综述了耐蚀烧结NdFeB永磁材料的最新研究成果,包括影响腐蚀的因素、提高磁体耐蚀性能的基础理论及方法、表面防护战略的基本框架及工程应用中的关键技术;最后,展望了未来前景并分析了面临的挑战,期望为今后的发展指明方向。  相似文献   

14.
采用高能球磨法实现烧结NdFeB磁体表面Ni镀层的致密化,并对致密化后Ni镀层进行膜/基结合力、维氏硬度测试,通过中性盐雾实验和高温PCT实验研究磁体的耐腐蚀性能,采用静态全浸腐蚀实验进一步分析磁体的腐蚀过程。结果显示,球磨处理工艺可以实现磁体表面Ni镀层的致密化,当转速400 rpm,球磨时间为24 h时,Ni-D24/NdFeB磁体的显微硬度由427.95 HV增加至502.67 HV,结合力由16.30 MPa提升至23.85 MPa,具有更好的耐机械损伤性能。镀层的自腐蚀电流密度较Ni/NdFeB磁体降低了1个数量级,耐中性盐雾时间由312 h提升至480 h,具有更好的耐腐蚀性能。  相似文献   

15.
Sintered NdFeB magnets possess excellent magnetic properties. However, the corrosion resistance property of NdFeB is very poor due to its multiphase microstructure consisting of matrix phase Nd2Fe14B, Nd‐rich phase, and B‐rich phase. The corrosion behavior of NdFeB magnets in sodium hydroxide (NaOH), sodium chloride (NaCl), nitric acid (HNO3), and oxalic acid (H2C2O4) solutions was investigated by immersion and electrochemical tests. HNO3is the strongest corrosive electrolyte compared with the other three solutions. The increase in HNO3concentration can accelerate the corrosion of NdFeB magnets. NaCl belongs to medium corrosion electrolyte. A NaCl concentration of 0.5 M shows the severest corrosive feature in comparison with other concentrations of NaCl solution. NdFeB hardly suffers corrosion in NaOH and H2C2O4solutions owing to the formation of passivation films on the surface of magnets. Based on the corrosion behavior of NdFeB in different electrolytes, the possible corrosion mechanisms are discussed.  相似文献   

16.
研究了Nd2Fe14B单晶、传统烧结NdFeB磁体和放电等离子烧结(简称SPS)NdFeB磁体在电解液溶液中的电化学特性。采用扫描电子显微镜和电子能谱分析了磁体的微观组织成分。结果表明在3.5%NaCI溶液的极化曲线中,Nd2Fe14B单晶具有最高的电化学腐蚀电位,放电等离子烧结NdFeB磁体的腐蚀电位高于传统烧结NdFeB磁体。与传统烧结NdFeB磁体相比,放电等离子烧结NdFeB磁体富Nd相具有独特的分布形态,主相Nd2Fe14B晶粒细小、均匀,富钕相在主相晶粒边界上分布较少,主要集中在三角晶界处。这种组织结构有效地抑制了磁体沿富钕相发生晶间腐蚀的过程,磁体因此具有良好的耐腐蚀性能。此外,从不同稀土含量的烧结NdFeB磁体的高压加速实验中可以看出磁体的腐蚀速度随稀土含量的增加而增大。以上结果表明富Nd相的化学特性及其分布状态和含量是决定合金耐蚀性能的关键,它在合金中以网络状分布在主相晶粒边界上,并决定了烧结NdFeB易于发生选择性晶间腐蚀,从而导致耐蚀性差。  相似文献   

17.
研究了NdFeB磁体微观结构和服役稳定性的内在联系。结果表明,低压烧结NdFeB磁体具有更加细小的晶粒尺寸和分布更为均匀的晶间富钕相,有利于磁体获得更小的矫顽力温度系数,从而提高其温度稳定性。对比真空烧结后的磁体,低压烧结磁体的矫顽力温度系数从-0.488%/℃减小至-0.472%/℃。但是富钕相从三角晶界向主相晶间流动形成了完整的网状结构,不利于磁体的耐腐蚀性能。低压烧结磁体在3.5%(质量分数)NaCl溶液中浸泡后腐蚀失重更为严重,表现出更强的腐蚀倾向。  相似文献   

18.
通过酸洗、浸泡法和电化学腐蚀测试分析了烧结Nd Fe B永磁体在不同浓度的H2SO4溶液、HCl溶液和HNO3溶液中的腐蚀行为。结果表明,烧结Nd Fe B磁体在HNO3溶液中的腐蚀机制为均匀腐蚀,而在H2SO4溶液和HCl溶液中的腐蚀机制为选择性的晶间腐蚀。烧结Nd Fe B磁体在酸溶液中的腐蚀速率随着酸溶液浓度的增加而增加。在浸泡试验和电化学腐蚀试验中,烧结Nd Fe B磁体在HNO3溶液中的腐蚀速率均最小。因此,HNO3溶液更适合作为烧结Nd Fe B磁体的酸洗液。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号