首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用自孕育法制备6061变形铝合金半固态浆料,研究浆料保温时间对自孕育流变压铸件凝固组织及力学性能的影响,并分析了压铸件不同部位的凝固组织及其差异形成的原因。结果表明:自孕育法可有效改善6061铝合金传统铸造形成的粗大树枝晶组织,制备出具有等轴状或球状初生α-Al晶粒的铸件。采用自孕育法制浆结合高压压铸能成形完整的6061铝合金半固态流变压铸件。相比传统金属型铸造和液态高压压铸,自孕育流变压铸能显著提高铸件的力学性能。浆料等温保温过程中,初生α-Al晶粒尺寸随着保温时间的延长逐渐增大且逐渐圆整,在保温时间为5 min时获得的流变压铸件组织最为圆整,力学性能最好,过长的保温时间会恶化组织并显著降低铸件的力学性能。对于同一参数的压铸件,随着浆料充型距离的增加,模具冷却速率逐渐增大,压铸件内部组织差异明显。  相似文献   

2.
采用自孕育铸造法制备2024变形铝合金半固态浆科,研究了2024变形铝合金半固态浆料的流变压铸成形,并对半固态浆料和压铸件的微观组织进行研究分析.结果表明,自孕育法可制备出组织均匀细小,具有球形或近球形初生相颗粒的半固态浆料.将自孕育法制备半固态浆料通过短时保温后,浆料中初生α(Al)内部无液相夹裹,平均晶粒尺寸为72.5 μm;在增压压力为160 MPa,压射充型速度在2~5 m/s,2024变形铝合金半固态浆料经625℃保温3min后能顺利进行流变压铸,2024铝合金经流变压铸后铸件的微观组织均匀,且铸件性能良好.  相似文献   

3.
采用自孕育法制备A356铝合金半固态浆料,通过光学显微镜、扫描电镜、能谱及电子探针研究浆料在连续冷却、等温保温及随炉冷却过程中的组织及成分变化。结果表明:采用自孕育法能够制备出初生α-Al晶粒细小且分布均匀的非枝晶半固态浆料;浆料在连续冷却过程中,初生α-Al晶粒逐渐长大并圆整,固相体积分数逐渐增大。浆料等温保温初期初生α-Al晶粒逐渐长大并圆整,晶粒长大速率符合D_t~3-D_0~3=Kt动力学方程;过长的保温时间会使晶粒合并而恶化组织。随炉冷却过程中较慢的冷却速率使剩余液相无法独立形核,浆料剩余液相主要通过初生α-Al晶粒稳定生长以及共晶反应而实现凝固;随着随炉冷却时间的延长,Mg完全扩散至晶内,晶内Si含量逐渐增加。  相似文献   

4.
自孕育法流变压铸AZ91D镁合金微观组织特征   总被引:1,自引:1,他引:0  
采用一种新的自孕育法制备AZ91D镁合金半固态浆料,研究了AZ91D镁合金半固态浆料的流变压铸成形,并对半固态浆料和压铸件的微观组织进行研究分析。结果表明,自孕育法可以制备出组织细小、均匀的半固态浆料。将自孕育法制备半固态浆料短时保温后,浆料中初生α(Mg)内部没有液相夹裹,平均晶粒尺寸为70.4μm;在增压压力为180 MPa,压射充型速度在2~5 m/s内,经585℃保温10 min的AZ91D镁合金半固态浆料能顺利进行流变压铸,能够改善AZ91D镁合金铸件的微观组织,获得性能良好的半固态压铸件。  相似文献   

5.
采用水冷铜质蛇形通道制备了半固态A380铝合金浆料,研究了浇注温度、弯道数量、冷却水流量对半固态A380铝合金浆料组织的影响。结果表明,随着浇注温度的降低,初生α-Al晶粒尺寸减小、形状因子提高;浇注温度在610~630℃时,可以获得理想的半固态浆料组织。随着水冷铜质蛇形通道弯道数量增加,半固态浆料组织中初生α-Al晶粒更加细小、均匀、圆整。水冷铜质蛇形通道冷却水流量为500L/h时,可以获得初生α-Al晶粒细小、圆整的半固态浆料组织。  相似文献   

6.
采用自孕育制浆结合高压压铸制备了AZ91D镁合金流变压铸件,研究了浆料保温时间对其凝固组织及力学性能的影响,采用能谱分析了液态压铸和半固态压铸组织及成分差异的原因,利用光学显微镜和扫描电镜观察了压铸件不同部位的凝固组织。结果表明:自孕育流变压铸能够细化AZ91D镁合金液态压铸组织,获得近球状初生α-Mg晶粒,且自孕育流变压铸过程形成的二次α-Mg晶粒相比液态压铸过程形成的细小激冷晶,Al元素含量显著升高;浆料保温时间只影响流变压铸件初生α-Mg晶粒,不影响二次凝固组织;采用自孕育流变压铸能够显著提高压铸件力学性能,并在保温3 min时达到最佳综合力学性能。  相似文献   

7.
采用自孕育法制备6061变形铝合金半固态浆料,研究了浇注温度对自孕育法制备6061变形铝合金半固态浆料的影响。结果表明,随着浇注温度的降低,组织中的树枝晶逐渐减少,甚至消失,且存在大量均匀细小的近球状晶或蔷薇状晶。适合6061变形铝合金的温度加工区间为710~730℃,平均晶粒尺寸为32.3~36.2μm。与传统铸造相比,通过自孕育法能够获得均匀细小的半固态浆料组织。  相似文献   

8.
采用低过热度浇注和弱行波电磁搅拌工艺,成功制备出6061铝合金半固态浆料。研究了浇注温度、搅拌功率和搅拌时间对6061铝合金半固态浆料的影响。结果表明:低过热度浇注和弱行波电磁搅拌技术可获得具有良好球状初生α-Al的6061合金半固态组织。浇注温度接近液相线温度,搅拌功率大于2.5kW,搅拌时间大于10s时,6061铝合金半固态浆料中的初生α-Al细小圆整,尺寸均匀。但是当浇注温度降至液相线温度时,组织中出现少量树枝晶。最佳工艺参数:浇注温度667℃、搅拌功率2.5kW、搅拌时间10s。  相似文献   

9.
采用近液相线铸造法制备含稀土La的ADC12铝合金半固态浆料,研究了稀土La含量、保温时间以及保温温度对ADC12铝合金半固态组织的影响。结果表明:ADC12铝合金通过加入稀土La并在液相线附近进行保温处理,能有效地细化枝晶,促进近球状颗粒的形成。加入质量分数为0.6%的La并在585℃保温15 min制备的ADC12铝合金半固态组织细小、均匀,初生α-Al颗粒呈近球状,共晶Si呈细小颗粒状。  相似文献   

10.
采用蛇形通道浇注制备半固态A356铝合金浆料,试验研究了短时电磁感应均热工艺对浆料温度和组织的影响规律.结果表明,利用短时电磁感应均热可以使蛇形通道浇注的半固态A356铝合金浆料的内部温差显著变小,最终可达到±1 ℃,可以满足流变成形的需要.同时,经过短时电磁感应均热后,初生α-Al晶粒得到进一步球化,但也发生了晶粒粗化.均热功率对蛇形通道浇注制备的半固态A356铝合金浆料组织有一定的影响.当均热功率为1.6~3.6 kW时,随均热功率的增大,均热时间缩短,初生α-Al晶粒更细小.浆料的均热温度对蛇形通道浇注制备的半固态A356铝合金浆料组织有一定的影响.当浆料温度为595~608 ℃时,浆料的均热温度越低,初生α-Al晶粒越细小.  相似文献   

11.
利用Al-La稀土中间合金对液态A356铝合金进行了细化处理,并用低温浇注技术制备了半固态A356铝合金浆料,研究了细化处理对所制备半固态A356铝合金的初生α-Al相形貌和尺寸的影响。结果表明,细化处理的A356铝合金经低温浇注可制备具有颗粒状和蔷薇状初生α-Al相的半固态浆料,稀土La可显著改善半固态A356铝合金中初生α-Al相的晶粒尺寸和颗粒形貌。探讨了稀土La对半固态A356铝合金的初生α-Al相细化机理。  相似文献   

12.
采用内冷式搅拌法制备了A319铝合金半固态浆料,研究了内冷块与铝合金液质量比、铝合金液温度、搅拌速度等工艺参数对半固态浆料显微组织的影响,分析了内冷式搅拌过程中半固态浆料的形成机理。结果表明,在内冷块与铝合金液质量比为5%、铝合金液温度为625℃、搅拌速度为1 100r/min时,可以制备出组织良好的半固态浆料,其中初生α-Al相平均晶粒尺寸和形状因子分别达到了59.7μm和0.74。提高内冷搅拌速度不仅能提高初生α-Al相的圆整度,还具有晶粒细化效应。  相似文献   

13.
半固态ZL201A铝合金浆料的制备   总被引:2,自引:0,他引:2  
利用低过热度浇注和弱电磁搅拌方法制备了半固态ZL201A铝合金浆料,浇注温度分别为678、663、648℃,利用光学显微镜观察了不同条件下的浆料组织。试验结果表明,随着浇注温度的降低,半固态ZL201A铝合金浆料内部组织中的初生α-Al由蔷薇状向球状转变,晶粒尺寸逐渐变小,分布更均匀。同时,浆料边缘和底部组织中的初生α-Al的形貌由粗大的枝晶向蔷薇状转变。对于半固态ZL201A铝合金浆料的制备,较佳的浇注温度为663℃。电磁搅拌均匀了ZL201A铝合金液的温度场,加大了同时凝固的区域,细化了初生α-Al晶粒;同时结晶潜热的集中释放有助于蔷薇状初生α-Al的根部熔断,加速了球状初生α-Al的形成。  相似文献   

14.
基于SIMA法,采用冷轧+半固态热处理工艺制备出6061铝合金半固态坯料。研究了半固态加热温度和保温时间对6061铝合金半固态坯料显微组织的影响。结果表明:随半固态加热温度的升高,α-Al固相颗粒的球形率增大,液相率升高;保温时间在0~15 min内,随保温时间的延长,α-Al固相颗粒越圆整、分布越均匀,液相率越高;当保温时间超过15 min后,α-Al固相颗粒尺寸逐渐增大,颗粒有簇聚的趋势,而液相率变化不明显;优化的加热工艺参数为630℃保温15 min,可获得6061铝合金半固态坯料理想的显微组织。  相似文献   

15.
采用行波电磁搅拌和低过热度浇注复合制备工艺,成功制备出初生α-Al为球状的较大尺寸A356铝合金半固态浆料.研究了浇注温度、搅拌频率和搅拌功率对A356铝合金半固态浆料组织的影响.结果表明,随着浇注温度的降低,半固态A356铝合金组织中的初生α-Al更圆整.当搅拌频率达到或高于10Hz时,半固态A356铝合金浆料中的组织比较理想.当电磁搅拌功率增大时,半固态A356铝合金熔体中的蔷薇状初生α-Al受到更剧烈的附加温度起伏而使枝晶根部熔断,形成更多更圆整的球状初生相.因此,在630℃浇注、搅拌频率为10Hz和搅拌功率为1.72kW下,能制备出更圆整、细小的初生α-Al.  相似文献   

16.
流变压铸YL112铝合金的微观组织特征   总被引:3,自引:3,他引:0  
将剪切低温浇注半固态(LSPSF)浆料制备工艺与传统高压铸造工艺衔接,研究出一种半固态浆料直接成形工艺——流变压铸技术。结果表明:LSPSFI艺可在15~20s制备出初生α(Al)形状因子为0.93,晶粒尺寸为70μm且分布均匀,初生α(Al)内部没有夹裹液相的YL112铝合金半固态浆料:与传统压铸相比,流变压铸可改善YL112合金铸件的微观组织,半固态浆料在二次凝固中发生体积凝固,铸件微观组织细小且分布均匀。该LSPSF流变铸造工艺与传统压铸工艺衔接简便,半固态浆料输送平稳,具有较强的可操作性。  相似文献   

17.
采用自孕育法制备A356铝合金半固态浆料,对比分析了半固态金属型铸造与传统金属型铸造的组织,研究了不同保温时间及保温温度对A356半固态浆料水淬组织的影响。结果表明,A356铝合金采用自孕育法进行半固态流变铸造可获得初生相分布均匀的非枝晶组织;A356半固态浆料在保温3min时初生颗粒的形状因子最接近于1,而且颗粒平均尺寸相对较小,因此,保温3min的组织为较理想的流变成形组织;保温温度的高低直接影响最终浆料固相率的高低。固相率过高(50%以上),初生颗粒的合并现象严重,使组织恶化;固相率过低(15%以下),浆料接近全液态,达不到半固态成形利于补缩的效果。适合A356合金的半固态保温温度为600~610℃。  相似文献   

18.
采用差式扫描热量法、光学显微镜和扫描电镜研究机械滚筒流变处理下ADC12铝合金的初生相演变。半固态浆料分析表明:合金的固相率随着滚筒转速的提高从0.38增加到0.43,但圆整度从0.45降低到0.38。随着浇注温度从620°C降到580°C,合金固相率和初生相平均颗粒尺寸随着浇注温度的下降而增加,初生相形貌由近球形转变为玫瑰形。在流变压铸条件下,合金中初生相α(Al)颗粒形貌圆整、颗粒细小并分布均匀。在595和605°C之间进行流变压铸可以获得最佳的显微组织。晶粒控制生长理论是ADC12铝合金实现流变处理的理论依据,半固态浆料在压铸成型中服从Mullins-Sekerka准则。  相似文献   

19.
利用自行研制的机械振动装置成功制备了ZL101铝合金半固态浆料。研究了保温温度、浇注温度这两个参数对浆料质量的影响。研究表明,保温温度越低,固相率越高;保温温度升高,半固态浆料的显微组织较为圆整,但是晶粒的平均直径有所增大。浇注温度较低,制备的ZL101半固态浆料中的初生α-Al晶粒较圆整,尺寸细小,最终固相率也相对较高。合适的保温温度为595~605℃左右,浇注温度为635~660℃左右。  相似文献   

20.
采用自孕育法制备6061变形铝合金半固态浆料,研究保温参数对自孕育流变压铸过程中凝固组织的影响,并结合OM、SEM、EDS及EBSD进一步分析流变压铸过程中的凝固行为。结果表明,保温过程只影响初生α(Al)颗粒,而对6061合金薄壁件压铸过程中剩余液相的凝固组织影响不大。流变压铸过程中,型腔提供的较大冷却速率使剩余液相爆发形核,并经过稳定生长、失稳生长以及合并长大阶段最终形成二次凝固颗粒(α_2)。由于二次凝固过程中已经存在一次颗粒,剩余液相的溶质浓度较一次颗粒的高;因此,二次颗粒中Mg元素和Si元素的含量比一次颗粒中的高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号