首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用弯曲应力松弛方法研究了魏氏组织Ti-6Al-4V合金200℃.400℃和600℃时的应力松弛行为,并利用TEM研究了应力松弛前后微观组织变化:宏观热力学参数结合微观组织观察初步探讨应力松弛机理。研究表明:应力松弛开始时应力下降较快.随时间延长.应力下降速率降低.最后趋于应力松弛极限。TEM微观组织观察结果结合表现应力指数分析表明:200℃和400℃应力松弛变形机制为位错蠕变,a型位错滑移:而600℃变形机制则为回复蠕变和原子扩散的共同作用机制.a型和a+c型或c型均开动.产生滑移和攀移。  相似文献   

2.
通过2个电子参数(结合次数Bot和d轨道能级Mdt)提出了新设计的α型钛(α-Ti)合金。新设计合金Ti-5Al-4Zr-3.6Sn、改性合金Ti-5Al-3Sn-1.9Zr和参考合金Ti-5Al-2.5Sn具有相同的Bot值(3.847)以及不同的Mdt值(2.430,2.426,2.422)。测试了3种α-Ti合金的极限抗拉伸强度(σUTS)、断裂应变(?f)和热盐腐蚀性能。3种α-Ti合金均采用冷坩埚悬浮熔炼技术进行制备。结果表明,3种合金样品均具有均匀的微观结构。在3种α-Ti合金中测量到的α单相晶粒尺寸约为600 μm。Ti-5Al-4Zr-3.6Sn合金的σUTS?f值为801 MPa和16%,Ti-5Al-3Sn-1.9Zr合金的σUTS?f值为708 MPa和15%,Ti-5Al-2.5Sn合金的σUTS?f值为603 MPa和15%。热盐腐蚀测试进行28.8 ks后显示Ti-5Al-4Zr-3.6Sn、Ti-5Al-3Sn-1.9Zr和Ti-5Al-2.5Sn合金的失重率为2.61%、2.83%和3.10%。σUTS?f和耐热盐腐蚀结果表明,新设计合金Ti-5Al-4Zr-3.6Sn是一种有实际应用潜力的钛合金材料。  相似文献   

3.
The true stress-true strain curves of Ti-6Al-2Zr-1Mo-1V alloy with hydrogen were obtained by hot compression test. The microstructures of the alloy before and after thermo-compression were observed. The apparent activation energies of deformation were calculated for the alloy with and without hydrogen. The behavior and mechanism of deformation for hydrogenated Ti-6Al-2Zr-1Mo-1V alloy at high temperature were analyzed. The relationship between hydrogenation time and hydrogen content at 800 ℃  can be expressed as the equation: CH(t)=1.2-1.2exp(-t/120). The true stress-true strain curves of hot compression for Ti-6Al-2Zr-1Mo-1V alloy with hydrogen first move down and then move up as hydrogen content increases. Appropriate hydrogen content can reduce the peak of flow stress to minimal value. The apparent activation energies of deformation of the alloy with 0.47% hydrogen content and without hydrogen were calculated as 140 kJ•mol-1 and 390,kJ•mol-1, respectively, at 800   ℃ and at strain rate 8.3×10-4 s-1. The apparent activation energy of deformation increases when the strain rate enhances from 8.3×10-4 s-1 to 8.31×0-2 s-1.  相似文献   

4.
左晓华  李庆丽 《铸造技术》2014,(8):1905-1907
根据实验获得的Ti-6Al-2Zr-1Mo-1V合金真实应力-应变曲线,通过计算机模拟研究了该合金在不同应变速率和温度下临界损伤因子的变化。结果表明,Ti-6Al-2Zr-1Mo-1V合金的最大损伤值总是分布在墩粗鼓的最外缘部位,并且应变速率对材料损伤软化现象影响较大。  相似文献   

5.
Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金本构关系的BP神经网络模型   总被引:2,自引:0,他引:2  
利用THERMECMASTOR-Z型热力模拟试验机,在变形温度为780~1 080 ℃,应变速率为0.001~70.0 s-1条件下对Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金进行等温恒应变速率压缩试验,获得不同变形温度、不同应变速率和不同真应变下的流动应力数据.结合试验数据和神经网络知识,构建了采用BP算法的人工神经网络,训练结束后的神经网络即成为Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金的一个知识基的本构关系模型.利用所建立的BP网络模型对材料的流动应力进行了预测,发现预测值与试验数据吻合良好,说明该BP网络本构关系模型具有较高的精度,可用于指导Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金热加工工艺的制定.  相似文献   

6.
利用Thermecmastor-Z热模拟机进行Ti-6Al-2Zr-1Mo-1V钛合金在不同工艺参数(变形温度800,850,900,1000,1050°C,应变速率0.01,0.1,1,10s-1)条件下的热模拟压缩试验,研究变形温度和应变速率对Ti-6Al-2Zr-1Mo-1V钛合金流变应力的影响。以试验数据为基础,应用BP神经网络算法原理,建立该合金的高温流动应力与变形温度、应变和应变速率对应关系的高温本构关系预测模型。结果表明,运用神经网络方法建立的Ti-6Al-2Zr-1Mo-1V钛合金本构关系模型具有较高的预测精度,与试验结果吻合良好。此外,运用Visual Basic可视化编程语言设计并开发了具有神经网络功能的用户界面。  相似文献   

7.
采用等温压缩试验研究不同原始组织对Ti-5Al-2Sn-2Zr-4Mo-4Cr合金流动应力、应变速率敏感性指数、应变硬化指数和表观变形激活能的影响。结果表明:原始组织为片层组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金具有更高的峰值应力和流动软化效应,当变形温度高于或等于810°C、应变速率为0.1~5.0 s-1时,原始组织为等轴组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金存在初始屈服现象。当应变为0.5~0.7、变形温度较低、应变速率为0.01 s-1时,原始组织为等轴组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金的应变速率敏感性指数值较大,这主要归因于其显微组织演变特征。隋着变形的进行,原始组织为片层组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金发生了α片层弯曲和动态球化现象,这使得其应变硬化指数变化显著。当应变为0.15~0.55时,原始组织为片层组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金的表观变形激活能更大。  相似文献   

8.
The influence of heat treatment on the microstructure and damage tolerance property of Ti-6Al-2Zr-1Mo-1V titanium alloy was investigated. The large-thickness Ti-6Al-2Zr-1Mo-1V titanium alloy plate was produced by β-processing, following with duplex anneal in (α+β) phase field and β anneal, respectively. The fatigue crack propagation rate(da/dN) test and the fracture toughness(Kit) test of Ti-6Al-2Zr-1Mo-1V were performed. The results show that the annealing in (α+β) phase field, with increasing anneal temperature, prior β grain size and a colony size of Ti-6Al-2Zr-1Mo-1V remained constant approximately, a lamella mean size increases gradually; KIC increases and da/dN decreases respectively; when annealing in β phase field, prior β grain size and a colony size increases sharply, da/dN decreases drastically, β anneal is better than anneal in (α+β) phase field as to improve the damage tolerance property of Ti-6Al-2Zr-1Mo-1V.  相似文献   

9.
研究了等轴组织BT14合金在200、400和600℃下应力松弛行为,并通过应力松弛过程中微观组织的变化研究应力松弛的微观机理.研究表明,200℃应力松驰变形中,有位错运动启动;400℃发现位错滑移带,这时应力松弛的微观机理均为位错滑移导致的微区塑性变形;600℃应力松驰变形中,发现亚晶界和位错网,其松弛机理为回复蠕变.  相似文献   

10.
通过高温压缩模拟实验,分析了Ti-6Al-2Zr-1Mo-1V合金在变形温度为850~1100℃,应变速率为0.01~10 s-1条件下的高温变形力学行为规律,并利用线性回归方法计算了不同温度范围内的应力指数n和变形激活能Q,获得了该合金高温变形力学行为计算模型.结果表明,Ti-6Al-2Zr-1Mo-1V合金对变形温度和应变速率非常敏感.在恒温时流动应力随应变速率的增大而增大,在恒应变速率时随变形温度的升高而降低.在850~950℃时,n、Q分别为7.0874和610.463 kJ/mol;而在950~1100℃时,n=4.7324,Q=238.030 kJ/mol,该预测模型的计算值与实测值之间的相对误差分别为6.341%和6.957%.  相似文献   

11.
The degree of strain relaxation via a formation of misfit dislocation has been calculated in single Si1-xGex/Si (001) epilayers grown at 640°C, by gas-source molecular beam epitaxy. The scale of strain relief via misfit dislocation was below 22% for Ge content x≤0.15. However, in the case of growth temperature of 550°C. the degree of strain relaxation in 270 nra single epilayer structures was 9% via misfit dislocation formation with negligible relaxation by surface undulation. As growth temperature decreased from 640°C to 550°C with higher Ge content (x=0.22), the mode of strain relaxation appears to have changed from one of misfit dislocation and surface undulation mechanism to that of predominant misfit dislocation formation.  相似文献   

12.
The degree of strain relaxation via a formation of misfit dislocation has been calculated in single Si1-xGex/Si (001) epilayers grown at 640°C, by gas-source molecular beam epitaxy. The scale of strain relief via misfit dislocation was below 22% for Ge content x≤0.15. However, in the case of growth temperature of 550°C. the degree of strain relaxation in 270 nra single epilayer structures was 9% via misfit dislocation formation with negligible relaxation by surface undulation. As growth temperature decreased from 640°C to 550°C with higher Ge content (x=0.22), the mode of strain relaxation appears to have changed from one of misfit dislocation and surface undulation mechanism to that of predominant misfit dislocation formation.  相似文献   

13.
The creep mechanism of as-cast Mg-6Al-6Nd alloy was studied. The stress exponent for creep is 5.8 under the applied stresses of 50–70 MPa at 175°C. The activation energy for creep is 189 kJ·mol−1 under the applied stress of 70 MPa in the range of 150–200°C. The true stress exponent and threshold stress for creep are calculated as 4.96 and 10.2 MPa, respectively. The true stress exponent indicates that its creep mechanism belongs to the dislocation climb-controlled creep, which is in agreement with the microstructure changes before and after creep. The high value for stress exponent is attributed to the interaction of Al11Nd3 phase with dislocations. The activation energy is more than the self-diffusion activation energy of Mg, which is attributed to the load transfer taking place from the matrix to Al11Nd3 phase during creep.  相似文献   

14.
《Acta Materialia》2001,49(15):3109-3116
Compressive creep of polycrystalline SrFe1.2Co0.3Ox and SrFeCo0.5Ox ceramics has been investigated at 940–1000°C in constant-load and constant-displacement-rate experiments. At low stresses, the stress exponent was ≈1 and the activation energy was ≈110–135 kJ/mol. At higher stresses, a transition occurred and the stress exponent became ≈2.4–3.1 and the activation energy became ≈425–453 kJ/mol. At higher stresses, there was no dependence of the steady-state flow stress on oxygen partial pressure from 10–105 Pa. The creep parameters and scanning and transmission electron microscopy observations of the deformed samples suggested that deformation was controlled by diffusion at low stresses and dislocation glide at high stresses.  相似文献   

15.
Ishitsuka  T.  Inoue  Y.  Ogawa  H. 《Oxidation of Metals》2004,61(1-2):125-142
The steam oxidation of 9Cr–0.5Mo–1.8W steels containing 0.06 to 0.49%Si was investigated at 500°, 550°, 600°, 650° and 700°C. The steam oxidation rate of the steel decreased with increasing silicon content. The effect of silicon was most remarkable at 700°C. At 500°, 550° and 600°C, the effect was almost the same, and was smaller than that at 700°C. At 700°C, the formation of a protective amorphous-SiO2 film reduced the oxidation rate considerably. On the other hand, at 600°C or less, silicon dissolved in the Fe–Cr spinel lattice with no evidence of SiO2. At 650°C, although amorphous SiO2 was observed, as at 700°C, at the scale–metal interface, the effect of silicon was the least within the test-temperature range. Thus, 650°C was a peculiar temperature for the effect of silicon on the steam oxidation of 9%Cr steels. The relatively small effect of silicon at 650°C is attributed to the formation of metastable FeO.  相似文献   

16.
The single crystal deformation behaviour of orthorhombic Al13Co4 has been studied below the brittle-ductile transition temperature observed in bulk material from room temperature to 600 °C, using indentation, microcompression and transmission electron microscopy. At room temperature, slip occurred most easily by dislocation motion on the (0 0 1)[0 1 0] slip system, as observed in the ductile regime at high temperatures. However, as the temperature was increased towards 600 °C, the slip pattern changed to one consisting of linear defects running perpendicular to the loading axis. Serrated flow was observed at all temperatures, although at 600 °C the magnitude of the serrations decreased. Anomalous yielding behaviour was also observed above 226 °C, where both the yield and the 2% flow stress increased with temperature, almost doubling between 226 and 600 °C. It has been suggested that this might arise due to the increasing stability of orthorhombic Al13Co4 with respect to the monoclinic form with increasing temperature. This is shown to be consistent with the theoretical predictions that exist.  相似文献   

17.
Bipolar electrochemistry produces a linear potential gradient between two feeder electrodes, providing access to the full spectrum of anodic-to-cathodic electrochemical behaviour. A type 420 martensitic stainless steel has been used to investigate microstructure evolution and corrosion behaviour with application of different tempering heat treatments. Tempering treatments at 250°C, 400°C and 700°C revealed the occurrence of pitting corrosion, with treatments at 550°C resulting in general and intergranular corrosion. Cr23C6 was present in all tempering conditions, with Cr7C3 and CrC only observed for tempering at 550°C. The 250°C tempering treatment had the highest corrosion resistance with a hardness value much higher than 500 HV.  相似文献   

18.
1 INTRODUCTIONTi 6Al 4VisoneofthemostimportantTial loys[1,2 ] .Butthisalloyhasbadformabilityforitshighelasticresilience .Therefore ,hotsizingisimpor tant[36 ] .Asthebaseofhotsizing ,thestudyofstressrelaxationhasimportanttheoreticalvalueandpracticalsignificance .Ontheotherhand ,Ti 6Al 4Visusedasfastenermaterialssometimes .Whenthefastenersworkatthetemperaturehigherthanroomtemperature ,stressrelaxationmayresultsinacci dents .Sohowtopreventthestressrelaxationisveryimportant[7] .Uptonow ,…  相似文献   

19.
The precipitation of secondary carbides in the laser melted high chromium cast steels during tempering at 300-650?°C for 2?h in air furnace was characterized and the present phases was identified, by using transmission electron microscopy. Laser melted high chromium cast steel consists of austenitic dendrites and interdendritic M23C6 carbides. The austenite has such a strong tempering stability that it remains unchanged at temperature below 400?°C and the secondary hardening phenomenon starts from 450?°C to the maximum value of 672 HV at 560?°C. After tempering at 450?°C fine M23C6 carbides precipitate from the supersaturated austenite preferentially. In addition, the dislocation lines and slip bands still exist inside the austenite. While tempering at temperature below 560?°C, the secondary hardening simultaneously results from the martensite phase transformation and the precipitation of carbides as well as dislocation strengthening within a refined microstructure. Moreover, the formation of the ferrite matrix and large quality of coarse lamellar M3C carbides when the samples were tempered at 650?°C contributes to the decrease of hardness.  相似文献   

20.
The mechanical properties of Fe–Al alloys with 39–43 at.% Al, C contents up to 4.9 at.% and Si contents up to 1.2 at.% were studied using uniaxial compressive creep at temperatures from 600 to 800 °C. The stress and temperature dependence of the creep rate were determined by stepwise loading and evaluated in terms of the stress exponent n and the activation energy Q, respectively. These quantities can be interpreted by means of dislocation motion controlled by climb and by the presence of second-phase particles. The dislocation motion is obstructed by precipitates of carbide κ in alloys E and F and by particles of Al4C3 in the alloys with either higher content of C or of C and Si. Both carbon and silicon improved the creep resistance, but the effect of silicon was more significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号