首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在磷酸盐碱性电解液中加入氟锆酸钾(K_2ZrF_6),利用微弧氧化技术(MAO)在AZ31镁合金表面制备了陶瓷膜层,研究了电解液中K_2ZrF_6对MAO膜层的形貌、相组成和耐腐蚀性能等的影响。结果表明,电解液中添加K_2ZrF_6能使MAO膜层变得更加均匀,也降低了膜层的表面粗糙度,所形成的MAO膜层主要是由Mg O,Mg F2和Zr O2相组成。长时间浸泡和电化学测试结果表明,电解液中添加K_2ZrF_6提高了MAO膜层的耐蚀性。本实验电解液中添加2.5 g/L K_2ZrF_6时,所形成的MAO膜层的耐蚀性最好,而过高浓度K_2ZrF_6会对膜层的耐蚀性产生负作用。  相似文献   

2.
利用微弧氧化技术,分别在不同电解液体系(Na_2SiO_3、NaAlO_2、Na_3PO_4)中制备AZ91D镁合金表面微弧氧化陶瓷层。采用SEM分析了微弧氧化陶瓷层表面的微观形貌、孔隙率。利用CHI650D电化学工作站,在3.5%NaCl溶液中测试了微弧氧化陶瓷层的耐腐蚀性能。结果表明,NaAlO_2体系微弧氧化膜表面微孔分布均匀,孔隙尺寸较小,约1~2μm;陶瓷膜厚度随氧化时间增加而线性增长,孔隙率则先增加后减小。NaAlO_2陶瓷膜的孔隙率仅为10.9%,膜层厚度可达30μm。NaAlO_2体系膜层腐蚀电位(-1.32 V)相对较高,自腐蚀电流密度(2.14×10~(-8)A·cm~(-2))较基体减小3个数量级,耐蚀性最好。  相似文献   

3.
目的提高镁合金微弧氧化膜的耐蚀性。方法在Na_2SiO_3-NaOH-Na_2B_4O_7组成的电解液体系中,分别加入铜离子、钴离子和镍离子对AZ91D镁合金进行微弧氧化,研究离子种类和组成对膜层性能的影响。采用点滴实验测试膜层的耐蚀性,采用电化学工作站测试膜层的电化学性能,采用扫描电子显微镜(SEM)和能谱分析(EDS)对微弧氧化膜层的表面形貌和元素组成进行分析。结果电解溶液中加入钴离子、铜离子、镍离子后,镁合金微弧氧化膜的耐腐蚀性能均有提高。其中铜离子的影响最大,加入1.5 g/L的铜离子后,镁合金微弧氧化膜的点滴时间提高了77.3 s,膜层耐腐蚀性能显著提高。电化学测试结果得出,不加金属离子的氧化膜的腐蚀电流密度为1.092×10~(-5) A/cm~2,腐蚀电位为-1.487 V;加入钴、铜、镍离子浓度分别为2、1.5、3 mol/L时,腐蚀电流密度分别为3.912×10~(-6)、6.027×10~(-6)、2.167×10~(-6) A/cm~2,腐蚀电位分别为-1.412、-0.832、-1.047 V;加入金属离子制得的微弧氧化膜的腐蚀电流密度均降低了1个数量级,腐蚀电位不同程度地正移,其中加入铜离子后腐蚀电位提高了0.655 V。加入金属离子后,陶瓷膜表面空隙和孔洞数量不同程度地变浅和减少,增加了膜层的致密性和均匀性。结论电解液中添加一定量的铜、钴、镍离子均能够提高AZ91D镁合金微弧氧化膜层的耐蚀性,其中铜离子的效果最明显。  相似文献   

4.
AZ91D镁合金微弧氧化工艺参数的优化   总被引:4,自引:0,他引:4  
利用自制微弧氧化装置在硅酸盐体系中对AZ91D镁合金进行微弧氧化处理.采用4因素3水平正交试验,从考察膜层厚度、表面粗糙度和耐蚀性出发,确定了AZ91D镁合金在硅酸盐体系中的最佳工艺参数.结果表明:在最佳工艺条件下,微弧氧化膜呈多孔结构、孔径较小,裂纹较少,分布均匀,膜层较为致密;微弧氧化膜由MgO、Mg2SiO4、MgAl2O4和少量的SiO2组成;室温下,在质量分数为3.5%的NaCl中性溶液中浸泡168 h后,膜层表面未出现明显的点蚀现象,耐蚀性较镁合金基体有了很大提高.  相似文献   

5.
陈宏  李佩  朱晓宇  康亚斌 《表面技术》2020,49(5):285-292
目的研究石墨烯浓度对AZ91D镁合金微弧氧化陶瓷膜生长及耐蚀性的影响。方法通过超声分散获得石墨烯分散液,添加到锆盐体系电解液中,采用微弧氧化技术,在AZ91D镁合金表面制备微弧氧化陶瓷膜。采用SEM、EDS对陶瓷膜微观结构进行分析,采用XRD对陶瓷膜物相组成进行分析,采用电化学工作站测量陶瓷膜在3.5%NaCl溶液中的极化曲线,并对其耐蚀性进行分析。结果随着石墨烯浓度增加,陶瓷膜微孔中的C含量先增加后减小,微孔外的C含量增加,陶瓷膜表面孔径和粗糙度先减小后增加,孔隙率增加,厚度几乎没有变化。并且石墨烯浓度对陶瓷膜相成分没有影响,主要相组成为MgF_2、ZrO_2、MgO和Mg_2Zr_5O_(12)。与未添加石墨烯的试样相比,添加石墨烯后,腐蚀电流密度降低了1~2个数量级,极化电阻增加了1~2个数量级。在石墨烯质量浓度为0.15g/L时,陶瓷膜表面微孔孔径达到最小,腐蚀电流密度最小,为9.46×10~(-7)A/cm~2,极化电阻最大,为1.95×10~6W·cm~2,耐蚀性最好。结论一定浓度石墨烯能够减小微弧氧化陶瓷膜微孔孔径,增加孔隙率,提高陶瓷膜的耐蚀性。  相似文献   

6.
目的提高镁合金微弧氧化膜层的耐蚀性。方法在锆盐体系电解液中对AZ91D镁合金进行微弧氧化处理,通过调节二次电压对AZ91D镁合金微弧氧化膜层的孔隙进行封闭,采用XRD、SEM和电化学测试分别对微弧氧化膜层的物相、表面形貌和耐蚀性进行了研究。结果二次电压对膜层的相成分没有影响,主要相组成为MgO、MgF_2、ZrO_2、Mg_2Zr_5O_(12)。随着二次电压的升高,膜层表面放电微孔孔径先减小后增大,孔隙率先降低后升高。与没有二次电压相比,施加二次电压的腐蚀电流降低2~3个数量级,极化电阻升高1~2个数量级,耐蚀性明显提高,且当二次电压为160 V时,膜层的极化电阻最高,耐蚀性最好。结论二次电压能够对AZ91D镁合金微弧氧化膜层的孔隙进行封闭,进而阻止腐蚀液通过微孔进入基体,提高膜层的耐蚀性。  相似文献   

7.
在AZ91D镁合金表面采用微弧氧化技术制备了不同厚度的陶瓷膜层,研究了不同厚度陶瓷膜层的高温氧化行为,讨论了膜层厚度对膜层高温氧化行为的影响。结果表明:膜层厚度在40μm内的AZ91D镁合金微弧氧化试样,在400℃加热128 h后,随膜层厚度的增加,膜层中疏松层所占比例增加,膜层对氧的阻挡作用增强,膜层增重量降低,膜层表面颜色变化减小,膜层破坏程度减轻,膜层在高温下保持完整的时间延长,高温氧化产物主要由镁和氧组成。  相似文献   

8.
先采用低温超音速火焰喷涂技术在AZ91D镁合金表面沉积一层致密的Al涂层,再采用微弧氧化技术进行微弧氧化处理,进而获得复合涂层。对热喷涂铝涂层微弧氧化的成膜过程、氧化膜微观结构和成分、复合涂层的耐腐蚀性能等进行了研究,并与在2024铝合金及AZ91D镁合金表面的微弧氧化过程和氧化膜层进行了对比。结果表明:在Al涂层上微弧氧化形成的微弧氧化膜呈多孔珊瑚状,相结构主要为γ-Al2O3,没有微裂纹产生,其微弧氧化过程与2024铝合金的微弧氧化大致相同;复合涂层具有良好的抗盐雾腐蚀性能,可显著提高镁合金的耐蚀性。  相似文献   

9.
利用微弧氧化技术对AZ91D镁合金在硅酸盐和锆盐溶液中进行表面陶瓷化处理,发现电参数对膜层厚度有很大影响。并采用IM6e型电化学工作站,对微弧氧化镁合金进行电位极化曲线测量。通过电化学测量对微弧氧化镁合金的腐蚀行为进行分析。用处理好的镁合金进行腐蚀实验,用失重法和极化法测试其耐蚀性,发现电解液中锆元素会大大提高膜层的耐蚀性。同时通过XRD分析发现硅酸盐电解液中制备的陶瓷膜主要由Mg2SiO4、MgO和MgF2等相组成,锆盐电解液中制备的陶瓷膜主要由MgO、MgF2和ZrO2相组成。  相似文献   

10.
AZ91D镁合金微弧氧化膜耐蚀性的试验研究   总被引:6,自引:0,他引:6  
研究了AZ91D镁合金微弧氧化膜在复合铝酸盐溶液中的耐蚀性。利用X射线衍射(XRD)和扫描电子显微镜(SEM)分析了AZ91D镁合金微弧氧化膜的物相和表面形貌;利用IM6e型电化学工作站测量了氧化膜的电化学阻抗和稳态电流/电位极化曲线;利用CMB-1501B型便携式瞬时腐蚀速度测量仪测量了氧化膜的腐蚀电流密度Icorr和年腐蚀深度MMA。试验结果表明,微弧氧化的镁合金耐蚀性提高了2~3个数量级,镁合金微弧氧化膜主要由MgO、MgAl2O4、Al12Mg17组成。  相似文献   

11.
微弧氧化技术是一种依靠弧光放电瞬间产生高温、高压,从而在金属表面生长以金属基体为主的陶瓷膜氧化层的表面改性技术,可制备诸如防腐、耐磨、耐热及其他功能化的膜层。试验研究了AZ91D铸造镁合金微弧氧化陶瓷膜,测试了膜层的组织形貌及性能,并列举了该镁合金机加件和压铸件微弧氧化应用实例,分析了微弧氧化技术未来发展方向。  相似文献   

12.
添加剂对AZ91D镁合金微弧氧化膜的影响   总被引:2,自引:0,他引:2  
以铝酸钠和氢氧化钠为主要组元,分别添加蒙脱石、EDTA、阿拉伯树胶的电解液对AZ91D镁合金进行微弧氧化,并用sEM、EDS、XRD和动电位极化曲线分析其微观组织结构和耐腐蚀性.结果表明,3种膜层的表面呈蜂窝状微观形貌,陶瓷氧化膜中主要存在相有MgAl2O4、MgO和Mg2siO4.与AZ91D镁合金基体相比其耐蚀性均有不同程度提高,其中以蒙脱石添加后膜层的耐蚀效果最好.  相似文献   

13.
在已优化的Na2SiO4-Na3PO4复合体系溶液中加入TiO2粉对AZ91D镁合金进行了微弧氧化处理。用EDS、SEM、XRD分析了加TiO2粉对陶瓷膜的表面形貌和相成分的影响。结果表明,加入TiO2粉体后陶瓷膜孔洞减少,且疏松层变得密实;膜层相成分增加了钛氧化物。加入TiO2粉体后陶瓷膜的耐蚀性有提高。膜层具有光催化性能。  相似文献   

14.
利用微弧氧化技术对AZ91D镁合金在硅酸盐和硝酸铈混合添加的电解液中进行表面陶瓷化处理。采用X射线衍射仪、扫描电镜和电化学工作站研究膜层的相组成、表面形貌以及耐蚀性能。结果表明:制备的陶瓷膜主要由Mg_2SiO_4和MgO组成。稀土Ce元素对膜层的性能影响较大,当添加0.003 mol/L稀土元素Ce时,表面孔洞数量和尺寸明显减小,表面更加光滑,耐蚀性显著提高。  相似文献   

15.
在NaAlO_2电解液体系中,采用自制微弧氧化成套设备对AZ91D镁合金进行微弧氧化。采用5因素4水平正交设计试验法,以膜层厚度和耐蚀性为指标,综合考察了各因素对膜层结构和性能的影响,确定最佳工艺条件为20g/L NaAlO_2,7g/L Na_2B_4O_7,频率500Hz,正占空比20%,氧化时间30min。对该工艺下制备的微弧氧化膜层进行SEM、XRD分析,膜层含有较多的NaAlO_2、MgO和Al_2O_3晶体相;相对基体而言,微弧氧化膜层耐蚀性提高2~3个数量级。动电位极化曲线及电化学交流阻抗测试进一步表明,AZ91D镁合金微弧氧化后,其耐蚀性明显提高。  相似文献   

16.
AZ91D镁合金表面微弧氧化陶瓷膜微观结构与组成的研究   总被引:4,自引:0,他引:4  
采用自制的恒流非对称方波电源用微弧氧化法在AZ91D镁合金表面制备了耐腐蚀陶瓷膜,通过微观分析手段对微弧氧化膜的截面特征、元素成分分布及表面膜的相组成进行了分析,研究了微弧氧化工艺参数对膜层表面形貌、微观结构与组成等的影响.结果表明,提高电流密度会造成组织疏松微孔孔径增大;硅酸盐溶液中微弧氧化制得的陶瓷膜优于铝酸盐溶液.而且电解液中的离子可参与成膜反应,硅酸盐溶液体系镁合金微弧氧化陶瓷层主要由MgO和Mg_2SiO_4相组成,铝酸盐溶液体系微弧氧化膜层主要由MgAl_2O_4相组成.  相似文献   

17.
AZ91镁合金微弧氧化处理研究   总被引:2,自引:0,他引:2  
研究了AZ91镁合金的微弧氧化处理,结果表明,在不同处理时间AZ91镁合金表面分别形成了厚度为28~106 μm的陶瓷膜层.膜层分外层膜和内层膜两层,内层膜质地较为致密;外层膜质地较为疏松.疏松层主要成分为Mg2SiO4 和 MgSiO3,致密层主要成分为MgO.  相似文献   

18.
AZ91D镁合金微弧氧化工艺参数的研究   总被引:1,自引:0,他引:1  
微弧氧化技术是一种在金属表面原位生长陶瓷膜的先进成形技术,是镁合金表面处理技术的重点发展方向,微弧氧化过程复杂,选择合适的工艺参数,优化工艺过程,对进一步提高膜层的性能来说至关重要。本课题通过试验研究了电流密度、占空比、频率和氧化时间对AZ91D镁合金陶瓷膜性能的影响,对工艺参数进行了优化。试验结果表明,AZ91D镁合金微弧氧化最佳的工艺参数:电流密度为1.0A/dm2、频率为600Hz、占空比为20%、微弧氧化时间为20min。  相似文献   

19.
镁合金微弧氧化电解液电导率的研究   总被引:3,自引:0,他引:3  
在硅酸系中对AZ91D镁合金微弧氧化电解液电导率特性进行了研究,并深入分析了电解液电导率对微弧氧化工艺参数和陶瓷膜性能的影响。结果表明,电解液温度对微弧氧化电解液电导率影响较大,温度每升高10℃,电解液电导率约增加12%左右。随着电解液电导率的增大,起弧电压降低,膜层生长速率加快;陶瓷膜耐蚀性先增大后减小,陶瓷膜硬度增长趋势先较快后变缓。  相似文献   

20.
AZ91D镁合金双脉冲微弧氧化参数确定及耐蚀性研究   总被引:1,自引:0,他引:1  
利用双脉冲微弧氧化电源对AZ91D镁合金进行微弧氧化处理,通过检测陶瓷层的厚度和粗糙度,确定了AZ91D镁合金在锆盐电解液中,单极氧化模式和双极氧化模式下的最佳的工艺参数;通过5%NaCl中性盐雾腐蚀试验,对最佳工艺参数下的试样进行陶瓷层耐蚀性检测;利用XRD检测双极试样陶瓷层表面的相成分。试验结果表明:在单脉冲输出形式下,AZ91D镁合金最佳的工艺参数:频率600 Hz,占空比25%;在双脉冲输出形式下,最佳的工艺参数:频率500 Hz,占空比25%,脉冲个数为2∶2;陶瓷膜主要由MgO、Mg2SiO4、MgAl2O4和ZrO2组成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号