首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
γ-TiAl alloys,including two categories(the conventional TiAl and the high Nb-containing TiAl(high Nb-TiAl)),are technologically intriguing because of their applications at high temperatures.Specifically,the service temperature of the high Nb-TiAl alloys is 60-100℃higher than that of conventional TiAl alloys.Recently developed TiAl alloys,for example TNB,TNM,β-γ alloys,belong to the high Nb-TiAl alloys,displaying similar behavior in phase transformation,strengthening,oxidation at high temperatures,and relationships between composition,microstructure,and mechanical properties.This work presents an in-depth review of the high Nb-TiAl alloys regarding the advances in phase diagram,formation mechanism of the new γ_1 phase,microsegregation induced by adding a high content of alloying element Nb,and the mechanism of the B2/ω phase formation.Some challenges in developing the high Nb-TiAl alloys are also discussed.  相似文献   

2.
NiAl intermetallic alloys are potential high temperaturestructural materials in aeronautical and astronauticalindustries[1].However,the poor ductility andtoughness at room temperature severely restrict theirengineering applications[2,3].It is important todevelop new technology to product intermetallicmaterials for the improvement of the comprehensiveproperties and the workability.Laser powder depositionhas been used to synthesize many new materials.Furthermore,if incorporated with rapid proto…  相似文献   

3.
Many researchers in China are actively engaged in the development of new types of wrought magnesium alloys with low cost or with high-performances and novel plastic processing technologies. The research activities are funded primarily through four government-supported programs: the Key Technologies R&D Program of China, the National Basic Research Program of China, the National High-tech R&D Program of China, and the National Natural Science Foundation of China. The key R&D activities for the development of new wrought magnesium alloys in China are reviewed, and typical properties of some new alloys are summarized. More attentions are paid to high-strength wrought magnesium alloys and high-plasticity wrought magnesium alloys. Some novel plastic processing technologies, emerging in recent years, which aim to control deformation texture and to improve plasticity and formability especially at room temperature, are also introduced.  相似文献   

4.
The exceptional corrosion resistance and mechanical properties of high-entropy metallic glasses(HE-MGs) are highly desirable for diverse critical applications.However,a long-standing problem of these alloys is that their alloy design approaches are based on limited equiatomic or near-equiatomic ratios.In this study,a novel senary alloy(non-equiatomic Fe_3 Cr_2 Al_2 CuNi_4 Si_5) with amorphous structure was prepared.This alloy exhibited exceptional corrosion resistance and Vickers hardness as high as~1 150 Hv at room temperature.The processing route involved amorphous powder molding via a mechanical alloying and ultrahigh pressure consolidation technique,resulting in an optimal microstructure of amorphous structure with nanoparticles uniformly distributed in the matrix alloy.This approach can effectively inhibit the crystallization of amorphous structure,thus providing a general pathway for manufacturing next-generation non-equiatomic HE-MGs with both exceptional corrosion resistance and strength.  相似文献   

5.
Permanent magnetic materials capable of operating at high temperature up to 500°C have wide potential applications in fields such as aeronautics,space,and electronic cars.SmCo alloys are candidates for high temperature applications,since they have large magnetocrystalline anisotropy field(6–30 T),high Curie temperature(720–920°C),and large energy product([200 kJám-3)at room temperature.However,the highest service temperature of commercial 2:17type SmCo magnets is only 300°C,and many efforts have been devoted to develop novel high temperature permanent magnets.This review focuses on the development of three kinds of SmCo based magnets:2:17 type SmCo magnets,nanocrystalline SmCo magnets,and nanocomposite SmCo magnets.The oxidation protection,including alloying and surface modification,of high temperature permanent magnets is discussed as well.  相似文献   

6.
Mg and its alloys are the lightest structural metals available and are extremely attractive for applications as lightweight components, particularly in the automobile, electronic, and aerospace industries. The global market for wrought Mg alloys has steadily expanded over the past decade. And numerous studies have been carried out to meet this increasing demand of high-performance Mg alloys. However, Mg extrusion alloys have had a very limited usage so far. To overcome existing industrial challenges, one desirable approach is the development of low-cost rare earth(RE) free Mg extrusion alloys with superior mechanical properties. This review will introduce the recent research highlights in the extrusion of Mg alloys, specifi cally focusing on low-cost RE-free Mg alloy. The results from both the literature and our previous study are summarized and critically reviewed. Several aspects of RE-free Mg extrusion alloys are described in detail:(1) novel alloying designs including Mg–Al-, Mg–Zn-, Mg–Ca-, Mg–Sn-, and Mg–Bi-based alloys,(2) advanced extrusion techniques, and(3) extrusion-related severe plastic deformation(SPD) processing. Accordingly, considering the large gap in mechanical properties between the current RE-free Mg alloys and high-performance aluminum alloys, new alloy design, processing route control, and recommendations for future research on RE-free Mg extrusion alloys are also proposed. We hope this review will not only off er insightful information regarding the extrusion of RE-free Mg alloys but also inspire the development of new Mg extrusion technologies.  相似文献   

7.
Owing to their low density and attractive high-temperature properties, gamma titanium aluminide alloys (TiAl alloys, hereafter) have significant potential application in the aerospace and automobile industries, in which these materials may replace the heavier nickel-based superalloys at service temperatures of 600-900℃. Investment casting of TiAl alloys has become the most promising cost-effective technique for the manufacturing of TiAl components. Ceramic moulds are fundamental to fabricating the TiAl casting components. In the present work, ceramic mould with a zirconia primary coat was designed and fabricated successfully. Investment casting of TiAl blades and tensile test of specimens was carried out to verify the correctness and feasibility of the proposed method. The tensile test results indicate that, at room temperature, the tensile strength and the elongation are about 450 MPa and 0.8%, respectively. At 700℃, the tensile strength decreases to about 410 MPa and the elongation increases to 2.7%. Microstructure and mechanical properties of investment cast TiAl alloy are discussed.  相似文献   

8.
Gas nitridation of TiAl based alloys in an ammonia atmosphere was carried out.The evaluation of the surface wear resistance was performed to compare with those of the non-nitridd alloys.It is concluded that high temperature nitridation raised wear resistance of TiAl based alloys markedly.The tribological behaviors of the nitrided alloys were also discussed.The oxidation kinetics of the nitrided TiAl based alloys were investigated at 800-1000℃ in hot air.It is concluded that nitridation is detrimental to the oxidation resistance of TiAl based alloys under the present conditions.The nitrided alloys exhibit increased oxidizing rate with the prolongation of nitridation time at 800℃.However,alloys nitrided at 940℃ for 50h display a sign of better oxidation resistance than the other nitrided alloys at more severe oxidizing conditions.The parabolic rate law is considered as the basis of the data processing and interpretation of the mass gain vs time data.As a comparison with it ,attempts were made to fit the data with the power law.The oxidation kinetic parameter kn,kp and nwere measured and the trends were discussed.  相似文献   

9.
Fabrication technology and mechanical properties of the Fe3Al based alloys were studied by spark plasma sintering from elemental powders (Fe-30Al, volume fraction, %) and mechanically alloying powders. The mechanically alloying powders were processed by the high-energy ball milling the elemental mixture powders with the milling time of 5, 8 and 10 min, respectively. The spark plasma sintering process was performed under the pressure of 50 MPa at 1 050 ℃ for 5 min. The phase identification by X-ray diffraction presents the Fe reacts with Al completely during the processing time. The samples are nearly full density (e.g. the relative density of sinter of raw powder is 99%). The microstructure was observed by TEM. The mechanical properties were tested by three-point bending at room temperature in air. The results show that the mechanical properties are better (e.g. bend strength of 1 500 MPa ) than those of the ordinary Fe3Al casting.  相似文献   

10.
The status of research, development of superalloys and materials processing & fabrication technologies for aero-engine applications in China Aviation Industry, with an emphasis on recent achievements at BIAM including directionally solidified and single crystal superalloys for blade and vane applications, wrought superqlloys for aero-engine disks and rings, and powder metalurgy (PM) superalloys for high performance disk applications were described. It was also reviewed the development of new class of high temperature structural materials, such as structural intermetallics, and advanced material processing technologies including rapid solidification, spray forming and so on. The trends of research and development of the above mentioned superalloys and processing technologies are outlined. Cast, wrought and PM superalloys are the workhorse materials for the hot section of current aero-engines. New high temperature materials and advanced processing technologies have been and will be the subject of study. It is speculated that high performance, high purity and low cost superalloys and technologies will play key roles in aero-engines.  相似文献   

11.
提高TiAl基合金室温塑性的方法   总被引:17,自引:6,他引:17  
TiAl基合金具有密度低、高温性能好等优点,但室温塑性低一直是阻碍TiAl基合金应用的重要原因。本文总结了TiAl基合金的室温塑性的主要影响因素,以及通过添加合金化元素、改善加工工艺等方法来控制显微组织、提高TiAl基金合金的室温塑性的研究进展。  相似文献   

12.
In the present work, the microstructure and compression properties of two novel γ(TiAl) based alloys, Ti-45Al-5Fe and Ti-45Al-5Fe-5Nb, have been investigated. Both alloys had a relatively fine as-cast structure generally consisting of the γ(TiAl) and τ2(Al2FeTi) phases with a minor amount of the α2(Ti3Al) and β(B2) phase. The compression properties of the novel alloys were measured at room and elevated temperatures. The Ti-45Al-5Fe-5Nb alloy showed higher room temperature ductility and similar strength at room and elevated temperatures as well as improved workability at elevated temperatures as compared to β-solidifying γ(TiAl) alloys of last generation (TNM alloys).  相似文献   

13.
TiAl基合金的工艺—显微组织—力学性能关系   总被引:18,自引:2,他引:16  
因密度、比刚度、高温比强度和阻燃性等方面的优势,TiAl基金属间化合物被认为是最有应用潜力的新一代结构材料。室温脆性以及延性、蠕变性能和其它性能的平衡是阻碍TiAl基合金作为高温结构材料实际应用的主要障碍。在分析合金化对组织与性能的影响及机理、加工/热处理 对组织与性能的影响、变形和断裂机制、显微组织与拉伸性能的关系、抗氧化性及改善、蠕变性能与蠕变机制的基础上,论述了TiAl基合金的工艺-显微组织-力学性能关系。  相似文献   

14.
TiAl合金激光气体合金化   总被引:6,自引:0,他引:6  
王华明 《金属学报》1997,33(9):917-920
本文利用激光气体合金技术对TiAl合金进行表面改性,制得了以TiN为增强相的新型快速凝固“原位”耐磨复合材料表面改性层,激光表面改性层显微组织受激光处理工艺参数的控制,试验结果表明,激光气体合化是一种提高TiAl合金耐磨性的表面改性新技术。  相似文献   

15.
粉末冶金TiAl基合金显微组织及力学性能的研究   总被引:7,自引:1,他引:6  
采用粉末冶金方法制备多种成分的TiAl基合金,并研究其显微组织及室温、高温力学性能,结果表明,采用粉末冶金方法能制备成分均匀、显微组织细小的Ti-Al-Cr-Nb系列合金。添加合金元素对粉末冶金TiAl基合金的显微组织具有显著影响。粉末冶金TiAl基合金的力学性能与其显微组织有密切的关系,显微组织越细小,其室温强度及延性越高,但在高温下,其屈服强度随晶粒尺寸增加而增加。所制备出的Ti-47Al-3  相似文献   

16.
快速凝固TiAl化合物的研究进展   总被引:4,自引:0,他引:4  
TiAl合金是一种很有希望的航空、航天及汽车用高温结构材料,但是其较低的室温塑性限制了它的应用.快速凝固技术有望使其性能得到改善.综述了近年来快速凝固TiAl合金的研究进展,包括快速凝固工艺、合金的发展以及合金的组织演变及其特征、力学性能及添加合金化元素的作用,亚稳相的产生及稳定性以及快速凝固薄带或粉末的固结等.  相似文献   

17.
Q. Liu  P. Nash 《Intermetallics》2011,19(9):1282-1290
The high temperature compression behavior of TiAl–Ru alloys was studied at different temperatures and strain rates. Ru was found to have a strong strengthening effect on TiAl alloys. However the Ru addition amount was limited by its low solubility in γ-TiAl and α2-Ti3Al, and the detrimental effect of excessive ternary phase precipitation. Furthermore, the melting temperature decreases when Ru ≥0.6 at.% as the alloy composition approaches a ternary eutectic point. The strengthening mechanism is discussed and two separate mechanisms are proposed, viz. solid solution strengthening and refined colony strengthening. Intergranular cracks were found in the alloys with low Ru or no Ru addition, but were barely detected as Ru content increased to above 0.6 at.%. It was suggested that Ru showed a beneficial effect on both strength and ductility of TiAl alloys due to the refined colony size. Three-point bend test results showed that the Ru addition can also improve the room temperature ductility of TiAl alloys. Hot workability was increased according to the compression tests. Thermal-mechanically treated TiAl–Ru had much smaller grain size than the heat-treated samples due to dynamic recrystallization. But it did not show superior strength in the compression test compared to the heat-treated samples. The Zener–Hollomon parameter was calculated from the compression strength of heat-treated TiAl–Ru alloys. Its relationship with dynamic recrystallization and hot work is discussed. The mechanical properties of TiAl–Ru alloys are compared with TiAl–Nb samples and demonstrate a promising combination of strength and ductility.  相似文献   

18.
Improving hot deformability of TiAl alloys by minor additions of Ni and Mg   总被引:1,自引:0,他引:1  
1 INTRODUCTIONTiAlalloysarepotentialaerospaceenginemateri alsbecauseoftheirlowdensityandhighperformanceatelevatedtemperature[1] .Se  相似文献   

19.
熔模精密铸造TiAl基金属间化合物研究进展   总被引:2,自引:0,他引:2  
TiAl基金属间化合物作为一种新型轻质高温结构材料,在航空航天和汽车等领域具有广阔的应用前景。熔模精密铸造是当前普遍采用的制备TiAl基金属问化合物的方法。主要介绍了熔模精密铸造TiAl基合金的铸件以及型壳用粘结剂及耐火材料的发展现状,TiAl合金的熔炼技术及最新研究进展,并对TiAl基金属间化合物熔模精密铸造技术的不足进行了分析并提出了展望。  相似文献   

20.
添加W对高铌TiAl合金组织和力学性能的影响   总被引:10,自引:3,他引:7  
研究了添加W(0.2原子分数,%)对高铌TiAl合金组织和力学性能的影响。试验结果表明,W合金化能改变高铌TiAl合金的铸态组织,但不能改变热加工组织以及4种典型组织和温度对其力学性能的影响。W合金化能提高高铌TiAl合金的室温及高温强度、降低强度随温度下降的速率 、提高脆韧转变温度,但对室温塑性影响不大,有利于FAM组织在更高温度下使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号