首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
对TC4钛合金分别进行了920℃、940℃、960℃、980℃保温1 h空冷的退火,随后进行了金相检验、拉伸试验和拉伸断口分析,以揭示退火温度对合金显微组织和拉伸性能的影响。结果表明:不同温度退火的TC4合金组织主要由初生α相和次生α相组成,随着退火温度的升高,初生α相含量减少;随着退火温度的升高,合金的强度升高,塑性降低,980℃退火的合金抗拉强度和屈服强度最高,为973 MPa和961 MPa,而塑性最差,断后伸长率为2%,断面收缩率为8%;在920℃和940℃退火的合金拉伸断口有大量韧窝,具有韧性断裂特征,960℃和980℃退火的合金拉伸断口韧窝数量明显减少,出现明显的撕裂棱和解离台阶,具有韧-脆性断裂特征。  相似文献   

2.
采用光学显微镜,扫描电镜和电子拉伸机等研究了TA15合金经两阶段强韧化退火热处理后的显微组织和性能。结果表明:采取两阶段的热处理工艺后,TA15合金的组织由约20%的初生等轴α,55%的片状α和β转变基体的组织组成;合金具有良好的塑性及较好的室温和高温强度,在975℃×1 h,WQ+850℃×2 h,AC的制度下,TA15合金的室温抗拉强度为1005 MPa,屈服强度为914 MPa,伸长率、冲击韧性分别为13%和72.2 J/cm^2。合金的冲击韧性I与次生片层α厚度t具有较好的线性关系I=26.504t+44.915,冲击断口形貌可以观察到大量的韧窝,表明合金的断裂机制以韧性断裂为主。随着第二重退火温度的升高,次生片层α厚度增加,韧窝逐渐变大,韧性增加。  相似文献   

3.
研究了固溶处理后不同时效温度对Ti-5Al-2V-3Fe-0.2O合金热轧板材显微组织与力学性能的影响。结果表明:热轧态板材组织主要由α相和β相组成;固溶处理后,组织中出现了α相向β相转变现象,由初生α相及亚稳态β转变组织组成;通过时效处理,亚稳态β转变组织部分分解,析出次生α相并形成晶间β相,随着时效温度从450℃升高到550℃,亚稳态β转变相进一步减少,次生α相增多并长大,初生α相逐渐粗化;与热轧态相比,固溶时效处理后板材抗拉强度和断后伸长率均提高,并且随着时效温度升高,抗拉强度逐渐降低,伸长率逐渐提高;940℃×15min/AC+500℃×6 h/AC热处理后的板材强度和伸长率分别达到1260 MPa、8.5%,具有较佳的综合性能。  相似文献   

4.
《热处理》2021,(4)
采用电子束增材制造技术制备了 TC4钛合金试棒,对试棒进行了 700~1 000℃的退火、900~960℃的固溶处理和550℃时效处理,检测了热处理后合金的显微组织和力学性能。结果表明:随着退火温度的升高,合金晶粒内α相的取向差增大,β相含量增加,针状α相数量减少,α相发生粗化;1 000℃退火的合金α相板条呈等轴状,组织明显粗大;随着固溶温度的升高,合金组织中针状次生α相数量增多,组织粗化;960℃固溶处理的合金组织为全片层状的次生α相;随着退火温度的升高,合金的抗拉强度和塑性均下降;随着固溶温度的升高,合金的抗拉强度增加而塑性降低,960℃固溶处理的合金抗拉强度最高,达1 167.2 MPa,断后伸长率为6%;经900℃×1 h固溶处理、水冷随后550℃×4 h时效处理的合金力学性能最好,抗拉强度为1 075.7 MPa,断后伸长率为10%。  相似文献   

5.
研究TA15板材在不同条件下真空退火后的力学性能、显微组织和断口形貌。结果表明:相比非真空退火,真空退火显著提高板材的力学性能。随着退火温度的升高,相界面和次生α相增多,但初生α相体积分数减少,从而导致板材的强度提高,伸长率降低。双重退火后获得的次生α相更加细小。在(950°C/2 h,AC)+(600°C/2 h,AC)下双重退火获得了良好的力学性能,其抗拉强度、屈服强度和延伸率分别为1070 MPa,958 MPa和15%。从拉伸断口形貌可以看到,最深最大的韧窝出现在850°C退火试样上,说明在该温度下退火板材塑性最好。  相似文献   

6.
双重退火对TC18钛合金等温锻件组织性能的影响   总被引:3,自引:1,他引:2  
研究了双重退火时不同的退火温度对TC18钛合金等温锻件组织性能的影响。结果表明:随着高温退火温度的升高,初生α相含量明显减少,次生片状α大量增加,合金的强度提高,塑性降低。随着低温退火温度的升高,细小弥散的次生α相不断长大粗化,合金强度不断降低。TC18钛合金等温锻造后采用830℃×2h,炉冷至750℃×2h,空冷+570℃×4h,空冷的双重退火工艺时,可得到较佳的显微组织和良好的综合性能。  相似文献   

7.
《塑性工程学报》2020,(2):108-113
以Ti-3. 5Al-5Mo-6V-3Cr-2Sn-0. 5Fe合金为研究对象,研究了冷轧过程中不同中间退火温度对合金轧制态、固溶态和时效态组织以及性能的影响。研究表明,冷轧板材的主要强化机制是加工硬化,轧程中间退火制度对加工硬化现象影响显著,α+β相区中间退火合金相比于β单相区中间退火合金加工硬化程度大,强度高,但伸长率低。冷轧合金板材经过750℃固溶处理2 min后晶粒尺寸显著细化,β单相区中间退火晶粒尺寸比α+β相区晶粒尺寸大。经过固溶处理后合金主要强化机制为细晶强化,α+β相区中间退火合金的晶粒尺寸小,强度和伸长率高于β单相区中间退火合金。冷轧合金板材经过750℃固溶处理2 min加550℃时效处理4、8和16 h后,在β基体上形成了大量的次生α相,随着时效时间的增长,次生α相的尺寸明显增大,合金强度先升高后下降,伸长率一直增加。α+β相区中间退火的合金形成了等轴的初生α相,其强度和伸长率均高于相同热处理状态下β单相区中间退火的合金。  相似文献   

8.
研究了热处理制度对Ti31合金显微组织与力学性能的影响。结果表明,随着退火温度的升高,初生α相含量减少,尺寸逐渐减小,次生α片层长宽比增加。相比于单重热处理制度,双重热处理后的初生α晶粒尺寸以及次生α片层宽度会轻微的长大;退火温度的上升有利于提高Ti31合金的屈强比、塑性和冲击韧性。经过920℃×1 h/AC+800℃×1 h/AC热处理后的Ti31合金具有最优异的综合力学性能。  相似文献   

9.
研究了退火处理对选区激光熔化技术(SLM)制备的TC4钛合金的力学性能及显微组织影响。结果表明,选区激光熔化成形的TC4合金试样主要由针状α′相组成,随着退火温度升高,逐渐分解成α+β相,且由魏氏组织向网篮组织转化,伸长率逐渐增大,屈服强度下降,拉伸断口呈韧性断裂特征。综合比较,800℃×90 min退火处理后合金具有较好的力学性能,抗拉强度为902.43 MPa,伸长率为2.38%。  相似文献   

10.
利用扫描电镜、透射电镜、X射线衍射仪、拉伸试验机以及硬度计等研究了多重热处理TC4钛合金获得不同α相的含量和形态对其组织和力学性能的影响。结果表明:采用三重热处理工艺能有效调节TC4钛合金组织次生α相的含量和形态,从而优化试验合金的力学性能。第一重热处理温度越高,初生等轴α相含量越低且减少速率越快。第二重热处理温度越高,组织中等轴α相的数量不断减少,次生条状α相含量增多且形态更为粗大,且组织中出现二次次生α相。随着初生等轴α相数量增加,晶粒尺寸减小,次生α相长宽比降低,集束域方向越混乱,试验合金的抗拉强度越高,塑性也越好。次生α相的含量越多,试验合金的硬度越高。经过940℃×1 h(WQ)+880℃×1 h(WQ)+820℃×1.5 h(AC)热处理后,试验合金具有等轴组织,表现出最好的强塑性匹配;而采用940℃×1 h(WQ)+920℃×1 h(WQ)+820℃×1.5 h(AC)热处理试验合金具有双态组织,表现出最高的硬度,且其强塑性匹配较好。  相似文献   

11.
利用场发射扫描电镜、电子背散射衍射技术、X射线衍射仪及电子万能试验机等对Fe-8Mn-xAl-0.2C(x=0, 3)冷轧中锰钢的微观组织与性能进行了研究。结果表明,Al的添加使奥氏体化温度明显升高。经高温临界区退火后得到了等轴的奥氏体与铁素体双相组织。添加Al提高了奥氏体的稳定性,影响了试验钢变形过程中的应变硬化行为,材料塑性得到改善。Fe-8Mn-0.2C冷轧试验钢在625℃退火获得了最优综合力学性能,抗拉强度为1220 MPa,伸长率为44%,强塑积为54 GPa·%;Fe-8Mn-3Al-0.2C冷轧试验钢在710℃退火获得了最优综合力学性能,抗拉强度为970 MPa,伸长率为58%,强塑积为56 GPa·%。此外,Al的添加扩大了试验钢获得优异力学性能的退火温度范围。  相似文献   

12.
对电子束冷床炉熔铸的TC4钛合金扁锭,通过3个火次轧制获得了不同厚度的板材,研究了不同退火温度(750、780、810和850 ℃)对板材显微组织和力学性能的影响。结果表明,一火轧制板材的显微组织破碎不充分,提高退火温度未能明显改变初生α相的形态,二火、三火轧制后原始片层组织逐渐完全破碎,等轴状初生α相比例相应提升,随着退火温度的升高,二火板材初生α相逐渐球化,三火板材初生α相在780 ℃开始逐渐长大,次生α相均呈现出增厚变宽的趋势。综合分析认为,一火板材在810 ℃、二火板材在840 ℃、三火板材在750 ℃退火后,获得了较好的强度和塑性匹配;通过对相应合金板材断口形貌分析,室温断裂机制和高温断裂机制均为典型的韧性断裂。  相似文献   

13.
以Ti6Al4V球形粉末为原料,利用激光选区熔化成形方法制备了Ti6Al4V合金试样,采用光学显微镜、扫描电镜及力学性能测试等手段,研究了退火工艺对Ti6Al4V合金室温力学性能及组织的影响规律。结果表明: SLM成形沉积态Ti6Al4V合金室温抗拉强度超过1200 MPa,而平均断后伸长率仅为4.0%;在650 ℃下进行真空退火处理,合金的抗拉强度仍保持在1200 MPa左右,规定塑性延伸强度Rp0.2高于1150 MPa,但试样的断后伸长率<10%;而在750及800 ℃下进行真空退火处理,合金试样的抗拉强度降至1100 MPa左右,规定塑性延伸强度高于1050 MPa,伸长率达到甚至超过10%,材料的综合强韧性得到明显提升。随着真空退火加热温度和保温时间的增加,SLM成形Ti6Al4V合金原始β晶界逐渐变模糊,晶粒趋向于等轴化。与此同时,快速冷却转变的α′针状马氏体未出现明显地粗化。  相似文献   

14.
研究了高温热变形后TC21合金棒材经一重及二重退火后其组织与性能的变化。结果表明:一重退火后,变形的α相在不同程度上发生了再结晶并等轴化,随退火温度升高,α相等轴化更为明显,且等轴α相粗化。二重退火后组织进一步等轴且均匀化,二重退火工艺略微降低了合金的强度,但是明显提高合金塑性。合金经过900 ℃×45 min,AC+590 ℃×4 h,AC处理后,断面收缩率提高了4.11%,伸长率提高了6.71%。  相似文献   

15.
In this study, in-situ tensile deformation behavior of powder metallurgy (PM) Ti6Al4V alloys was investigated to analyze the crack initiation and propagation. Accordingly, the fracture mechanisms of the as-sintered and forged PM alloys were summarized. At the initial stage of plastic deformation, cracks appeared in the stress concentration area of pores in the as-sintered Ti6Al4V alloy, and the crack propagation direction was along the phase boundary. Due to the existence of pores, early fracture was obtained, resulting in low elongation of 6.3%. After forging, the crack initiation occurred between α lamellar structure, and the propagation direction was along the lamellar direction. The fine lamellar structure in different directions in the forged PM Ti6Al4V alloy can hinder the crack propagation, thus improving the plasticity. As a result, better comprehensive mechanical performance was obtained in the forged sample, with UTS of 960 MPa, YS of 850 MPa, and EL of 16%.  相似文献   

16.
正火温度对电弧增材制造Ti-6Al-4V组织与性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用TIG电弧增材制造技术制备了TC4钛合金样件,并对样件进行了正火处理. 结果表明,经正火处理后的试样组织由α相和β相组成;在750 ~ 950 ℃范围内,随着正火温度的升高,针状初生α相变短变粗,并逐渐向网篮组织方向转变;在950 ~ 1 050 ℃温度范围内,随着温度的升高,部分初生α相聚合长大,并向着“伪等轴晶”方向转化,在1 050 ℃形成了“伪等轴晶”初生α相 + 细小针状初生α相 + 细小针状初生α相之间的α + β组织,针状初生α相随着温度的升高变短变细. 最佳条件(850 ℃/2 h/空冷)下y方向的抗拉强度900.4 MPa、屈服强度820.4 MPa、断后伸长率9.3%、断面收缩率27.4%,z方向的抗拉强度890.1 MPa、屈服强度790.1 MPa、断后伸长率10.8%、断面收缩率31.0%,其性能接近锻件标准要求;沉积态与正火处理态的硬度值变化不大;拉伸试样(y和z方向)断口形貌均布满韧窝,属于塑性断裂.  相似文献   

17.
对Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金进行固溶时效处理,随后使用光学显微镜、扫描电镜、XRD衍射仪、拉伸试验以及冲击性能试验,分析固溶时效对合金中α′相和α″相的组织演变与力学性能的影响。结果表明,固溶处理后的微观组织中发生初生α相尺寸变小并趋于等轴化,尺寸较小的初生α相发生溶解并消失,其β转变组织变得不明显,经时效后的微观组织中析出大量αs相,β转变组织更加明显。经固溶处理后,组织均由α+α′+α″相构成,经时效处理后,组织由α相和β相构成。合金经固溶处理后,其抗拉强度为1336 MPa,屈服强度为1070 MPa,断后伸长率为6%,断面收缩率为22%,冲击吸收能量为16 J。经时效处理后,强度随时效温度升高而升高,塑性趋势与之相反,其冲击性能几乎没有变化。合金经固溶处理后的拉伸与冲击断口微观形貌均由韧窝构成,为典型的韧性断裂。经时效处理后,拉伸和冲击断口的微观形貌有明显的高低起伏,随着时效温度的升高,韧窝的尺寸和数量减少,并出现撕裂棱以及空洞,断裂类型有向脆性断裂转变的趋势,但仍以韧性断裂为主。  相似文献   

18.
The solution-treated Mg-4Y-4Sm-0.5Zr alloy was extruded at temperatures from 325℃ to 500℃.Dynamic recrystallization(DRX) completely occurs when the alloy is extruded at 350℃and above.The grains of the extruded alloy are obviously refined by the occurrence of DRX.The average grain size of the extruded alloy increases with increasing the extrusion temperature,leading to a slight decrease of the ultimate tensile strength(UTS) and the yield strength(YS) .On the contrary,the UTS and YS of the extruded and aged alloy increase with increasing the extrusion temperature.Values of UTS of 400 MPa,YS larger than 300 MPa and elongation(EL) of 7%are achieved after extrusion at 400℃ and ageing at 200℃ for 16 h.Both grain refinement and precipitation are efficient strengthening mechanisms for the Mg-4Y-4Sm-0.5Zr alloy.  相似文献   

19.
对喷雾造粒高密度合金粉末进行1 600℃瞬时烧结处理,采用常压氩气保护等离子喷涂成形技术制备了壁厚≤5 mm的零部件,研究真空固相及液相烧结对喷涂成形件显微结构、致密度及力学性能的影响。结果表明:瞬时液相烧结后,喷雾造粒团聚体内的微细球磨粉末由机械混合转变为冶金结合,喷涂沉积率从45%提高至70%以上。等离子喷涂沉积层为层片结构,致密度约88.9%。经1 200和1 300℃真空固相烧结后,沉积层保持原始的层片结构,成形件拉伸强度随致密度升高而增大,其断口呈典型的沿晶断裂形貌,伸长率为零。经1 400℃液相烧结后,成形件仍表现为层片结构及沿晶脆性断裂形貌。经1 465℃烧结后,沉积层由层片结构转变为颗粒结构,成形件致密度显著提高至98.05%;断裂方式以沿晶断裂为主,穿晶断裂为辅;拉伸强度显著增大至567.10 MPa,伸长率达8.65%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号