首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用圆柱体等温热压缩试验对AZ80镁合金的变形行为进行研究。结果表明,当变形温度为200~350℃,应变速率为0.002~1s-1,随着应变速率的增加和变形温度的降低,合金的流变应力增加;通过线形回归获得了AZ80镁合金高温条件下的流变应力本构方程,发现应变速率敏感指数m随着温度的升高呈上升趋势;同时采用力学方法直接从流变曲线确定了AZ80镁合金发生动态再结晶的临界应变量,并回归出临界应变量与Zenner-Hollmon参数的关系式。  相似文献   

2.
AZ80变形镁合金高温变形流变应力分析   总被引:1,自引:1,他引:0  
采用实验法研究了AZ80镁合金高温高应变速率压缩时的流变应力.结果表明,镁合金在200~400℃、应变速率为0.001~10s-1进行高温压缩的情况下,流变应力随应变速率的升高和变形温度的降低而升高,其稳态流变应力同Zencr-Hollomon参数的对数之间呈线性关系.引入Zener-Hollomon参数的指数形式来描述AZ80镁合金热压缩变形时流变应力与变形温度和应变速率之间的关系.  相似文献   

3.
AZ80镁合金变形特性及管材挤压数值模拟研究   总被引:1,自引:0,他引:1  
利用Gleeble热模拟机研究了AZ80合金的高温变形特性。结果表明,流变应力取决于变形温度和变形速率。当应变速率一定时,流变应力随变形温度的升高而降低;当温度一定时,流变应力随着应变速率的升高而增大。根据AZ80镁合金真应力-真应变曲线,建立了其流变应力模型。采用刚塑性有限元法对AZ80镁合金管材挤压过程进行热力耦合数值模拟,并分析了高温挤压成形过程中变形力及金属流动规律,着重探讨了变形温度和挤压速度等挤压工艺参数对挤压力、应变场以及应力场的分布及变化情况的影响。模拟的结果为AZ80镁合金管材挤压工艺参数的制定、优化提供了科学依据。  相似文献   

4.
在变形温度为250~450℃、应变速率为0.005~5 s-1的条件下,采用热模拟压缩实验得到流动应力-应变曲线,研究了挤压态镁合金热变形和动态再结晶行为。结果表明:AZ31镁合金发生动态再结晶的临界应变随着变形温度的升高或应变速率的减小而降低;镁合金变形初期发生动态再结晶所需要的激活能为191.2 kJ·mol-1。基于实验数据回归分析,建立AZ31镁合金动态再结晶临界应变模型,得到动态再结晶临界应变与流动应力曲线峰值应变的比值约为0.57;应用Avrami方程建立镁合金动态再结晶动力学模型,预测出镁合金动态再结晶临界应变值,与微观组织实验结果一致,验证了模型的正确性,可以用于AZ31镁合金热加工中的动态再结晶预测。  相似文献   

5.
采用Gleeble-1500D热模拟实验机,对AZ80镁合金在250℃~450℃之间,应变速率为0.001s-1、0.01s-1、0.1s-1、1s-1、5s-1进行热模拟压缩变形,对试样宏观形貌与变形温度和应变速率进行了分析,分析了流变应力与应变速度和温度的关系,结果表明:AZ80镁合金的压缩热变形属于动态再结晶型,镁合金的变形抗力随着变形温度的上升而减小,塑性随着变形温度的增加而有所提高。随变形温度的升高和应变速率的减小,流变应力峰值向应变减小的方向移动,同一变形速率下,变形温度越高所对应的应力值越低。  相似文献   

6.
半连续铸造AZ31B镁合金的热压缩变形行为   总被引:1,自引:0,他引:1  
针对半连续铸造的AZ31B镁合金,采用Gleeble-1500热/力模拟机在变形温度为473~723 K、应变速率为0.01~10 s-1、最大变形量为80%条件下进行热/力模拟研究;结合热变形后的显微组织,分析合金力学性能与显微组织之间的关系。结果表明:当变形温度一定时,流变应力和应变速率之间存在对数关系,并可用包含Arrheniues项的Z参数描述半连续铸造的AZ31B镁合金热压缩变形的流变应力行为;实验合金在523 K时开始发生动态回复;随着变形温度的升高和应变速率的降低,动态再结晶开始对AZ31B合金的变形行为产生明显影响,在变形温度623 K以上的各种应变速率下,AZ31B镁合金易变形。  相似文献   

7.
AZ91D镁合金高温压缩变形行为   总被引:6,自引:6,他引:0  
针对AZ91D镁合金,采用Gleeble1500D热模拟实验机对原始铸态试样在不同温度和应变速率下的高温压缩变形行为进行了实验研究.结果表明,AZ91D镁合金在压缩温度为200℃时,随着应变速率增大,应力升高加快;压缩温度为300~400 ℃、应变速率为0.001~1 s-1时,材料呈现出稳态流变的特性;当应变速率提高到5 s-1时,未出现稳态流变现象.建立了AZ91D镁合金低、高温压缩的变形力学模型,其结果可为镁合金的塑性成形工艺的制订提供理论依据.  相似文献   

8.
在变形温度为260~410℃、应变速率为0.001~10 s~(-1)条件下,对AZ80镁合金进行热拉伸实验,测试AZ80镁合金的真应力-真应变曲线;依据Arrhenius本构方程形式,确定AZ80镁合金热变形过程的本构关系模型;提出一种新的加工硬化率方法,当加工硬化率函数对应变(ε)求一阶导数后的函数取最小值时所对应的应变值,即为临界应变(εc)。采用新的加工硬化率方法,确定AZ80镁合金在不同变形条件下动态再结晶的临界应变和临界应力;研究热变形工艺参数对临界应变和临界应力的影响规律;确定AZ80镁合金热变形过程中的临界应变、临界应力、稳定应变与Z参数的关系模型。模型计算结果与Sellars模型结果相吻合。  相似文献   

9.
AZ80镁合金高温热变形流变应力研究   总被引:2,自引:1,他引:1  
在Gleeble2000热模拟机上对铸态AZ80镁合金在应变速率为0.001~1s-1、变形温度为240~440℃条件下的热压缩变形行为进行了研究.结果表明:AZ80镁合金热压缩变形的流变应力受到变形温度和应变速率的显著影响,可以用Zener-Hollomon参数的双曲正弦函数形式进行描述.本实验条件下,AZ80镁合金热压缩变形时的应力指数n为5,其热变形激活能Q为183 kJ·mol-1,建立了流变应力的数学模型,其结果可为变形镁合金的塑性成形工艺的制订提供更为科学的依据.  相似文献   

10.
AZ91镁合金高温变形本构关系   总被引:7,自引:0,他引:7  
王智祥  刘雪峰  谢建新 《金属学报》2008,44(11):1378-1383
采用Gleeble-1500热模拟机对AZ91镁合金进行了高温压缩变形实验,分析了该合金在变形温度为250-400℃,应变速率为0.001-1 s-1条件下流变应力的变化规律.结果表明,变形温度和应变速率均对流变应力有显著的影响,流变应力随变形温度的升高和应变速率的降低而降低,当变形温度≥400℃、应变速率≤0.001 s-1时,流变应力随变形量的增加达峰值后呈稳态流变特征.并采用双曲正弦模型确定了该合金的变形激活能Q和应力指数n随应变量的变化规律,建立了相应的热变形本构关系.经实验验证,所建立的本构关系能较好地反映AZ91镁合金实际热变形行为特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号