首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
以700℃新型涂层双管系统为研究对象,采用有限元顺次耦合的计算方法,开展了热机载荷作用下TGO厚度和界面形貌对系统应力分布的影响研究。结果表明:TGO的厚度与其界面粗糙度均会对系统的Mises应力分布产生影响,但是与TGO厚度相比,粗糙度对TGO/BC界面靠近波峰处的Mises应力影响更加显著。此外,在TGO界面幅值和波长一定的条件下,不同的界面波形排列不会直接影响系统TGO/BC界面波峰处的Mises峰值应力;由于幅值和波长变化有效地改变了TGO界面的曲率,它们是控制涂层双管系统TGO/BC界面应力分布的关键特征参量。  相似文献   

2.
为了更好的理解热障涂层的失效机理,文中运用ABAQUS有限元软件来分析热障涂层的失效情况,使用内聚力单元和扩展有限元(XFEM)两种方法研究热障涂层TGO界面开裂与陶瓷涂层(TC)和氧化层(TGO)内随机裂纹的萌生与扩展,研究竖直裂纹与水平裂纹的关系.结果表明,热障涂层TGO界面的开裂首先出现在TGO/TBC波谷处.陶瓷涂层和氧化层内随机裂纹的萌生同样发生在TGO/TBC波谷处.竖直裂纹的存在可以抑制水平裂纹的萌生与扩展,且其在TGO/TBC波谷处的扩展长度比在TGO/TBC波峰处的扩展长度更长,说明TGO/TBC波谷区域是个危险区域,在此区域容易引发裂纹的萌生与扩展.  相似文献   

3.
TGO界面特征对热障涂层残余应力的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
韩志勇  张华  王志平 《焊接学报》2012,33(12):33-36
采用非线性有限元方法模拟计算了热障涂层中陶瓷层(TCC)及粘结层(BC)与热生长氧化物(TGO)层界面的残余应力的分布,计算过程中,考虑到了材料物性的非线性特征及界面形貌特征的影响.结果表明,形貌单元尺寸及分布密度对TGO界面应力有明显的影响,TCC/TGO界面的应力大于BC/TGO界面的应力.在锥形坑形貌中心尖点处存在应力集中现象,且呈现最大应力值,是涂层失效的危险点,并且残余应力值随着界面形貌分布密度的增加而减小.  相似文献   

4.
采用有限元顺次耦合的方法,开展了热机载荷作用下含微结构构型的新型高效涂层双管系统传热和应力分析,初步研究了关键特征参量对系统传热和应力分布的影响。结果表明:在稳态工作条件下,热障涂层为主蒸汽管道提供了足够的隔热保护,但由温度梯度产生的热应力对系统结构完整性产生了很大影响;系统中环向应力远大于径向应力,最大环向应力出现在TGO/BC余弦界面靠近TGO侧的波峰处;此外,TC层厚度、TC层热膨胀系数、冷却蒸汽的温度和压力决定了系统的传热和应力分布。  相似文献   

5.
界面粗糙度对热障涂层残余应力和裂纹演化的影响   总被引:1,自引:0,他引:1  
由于残余应力的作用是造成热障涂层失效剥落的主要因素之一,本工作采用不同幅值的正弦曲线来模拟粗糙度对陶瓷层(TBC)-结合层(BC)界面处残余应力分布的影响;以内聚力模型模拟TBC-BC界面,研究了在外加机械载荷作用下粗糙度对界面裂纹萌生和扩展的影响。结果表明,粗糙度对残余应力分布以及裂纹的形核与扩展有很大的影响。随着粗糙度的增大,陶瓷层和结合层靠近界面的波峰波谷处最大拉/压应力也增大。当施加一定拉伸位移载荷时,最大损伤与裂纹首先在幅值最小的波峰波谷处产生。  相似文献   

6.
目的更好地理解热障涂层在热循环条件下的失效行为。方法采用有限元方法引入了内聚力模型,研究热障涂层在多次热循环条件下的界面开裂行为,并且考虑了陶瓷层厚度和粘结层厚度对界面开裂行为的影响。结果涂层最先在陶瓷层/TGO层界面的波峰与波谷之间开裂,此外在界面波谷处也存在开裂现象。当陶瓷层厚度在300~500μm范围内,界面裂纹的平均长度随陶瓷层增厚而增长,裂纹密度也随之增加。粘结层厚度为50μm时,界面裂纹的平均长度为15μm;当厚度增加到100μm时,界面裂纹平均长度减少到10μm;而厚度为150μm时,界面裂纹平均长度又提高至12μm。当粘结层与陶瓷层厚度比在0.2~0.4的范围内时,陶瓷层/TGO层界面上的最大拉应力最小。结论陶瓷层厚度和粘结层厚度对热障涂层界面开裂行为的影响极大,小厚度陶瓷层以及当粘结层与陶瓷层厚度比在0.2~0.4的范围内时,热障涂层具有更好的抗界面开裂能力。粘结层厚度不宜过大,超过一定厚度时反而会降低涂层的抗界面开裂能力。计算结果与文献报道的结果相近,证明了模拟结果的准确性。  相似文献   

7.
目的 探索激光冲击(LSP)对高温热循环(反复升温、保温和降温)过程中热障涂层中的热生长氧化物(TGO)表面及TGO/黏结层(BC)界面应力分布的影响规律。方法 基于真实TGO形貌,建立有限元模型,从应力演化角度分析LSP改性(LSPed)与未改性(Non-LSPed)试样危险区域的失效形式;使用拉曼光谱法(RFS)对氧化后的金属黏结层进行残余应力测试。结果 TGO应力分布随着形貌的起伏呈现相应的起伏变化。TGO表面压应力最大值出现在波峰位置,经10次热循环后LSPed试样TGO表面S11(平行于涂层表面的正应力)压应力最大值大于Non-LSPed试样,经50次热循环后LSPed试样TGO表面压应力最大值远小于Non-LSPed试样;随着热循环次数的增加,2类试样TGO/BC界面S11应力的差别变小。LSPed试样TGO表面S22(垂直于涂层表面的应力)应力随着热循环次数的增加逐渐增大,但S22拉应力小于250 MPa,应力总体偏低。TGO/BC界面S22、S12(平行于涂层表面的剪切应力)应力随循环次数的变化规律基本一致,经10次热循环后,LSPed试样的S22、S12应力均大于Non-LSPed试样;经50次热循环后,2类试样界面的S22、S12应力相差不大。结论 文中构建的TGO应力有限元仿真模型,模拟结果与测试结果吻合。LSP通过调控TGO生长速度,可以有效缓解TGO生长过程中应力的剧烈变化,大幅降低TGO表面S11和S12应力最大值,进而降低TGO表面产生垂直于表面贯穿裂纹和剪切破坏的风险,LSP对TGO表面(TGO/BC界面)应力状态的影响较小。  相似文献   

8.
针对热障涂层系统裂纹的形核位置变化与扩展失效过程及其机理,提出采用内聚力单元分析热氧化物(TGO)层/陶瓷(TC)层界面裂纹的形核位置及扩展,采用扩展有限元法分析TGO层厚度、粗糙度以及TC初始裂纹对新TC、TGO裂纹形核位置及扩展的影响。结果表明:TGO/TC界面承受热循环载荷后,界面裂纹首先出现在近波峰处同时向两侧扩展;在冷却过程中,随着TGO初始厚度增加,TC裂纹的形核位置由波峰转向近波峰处而裂纹扩展长度没有明显变化,TGO裂纹形核位置不变但裂纹长度明显增加;随着TGO粗糙度的不断减小,TC裂纹形核位置由近波峰向中部转移,而裂纹扩展长度没有明显变化。当粗糙度减小到一定程度,TC裂纹被抑制。而TGO裂纹的形核位置没有变化,但裂纹扩展长度随着TGO粗糙度减小而增大;初始横向TC裂纹越长,TGO裂纹也越长。近波峰与中部的初始竖直TC裂纹能有效地抑制新的TC裂纹形核与扩展。本研究为热障涂层微裂纹失效机理提供了理论支撑。  相似文献   

9.
目的获得热障涂层系统危险界面应力解析解及其变化规律。方法基于弹性理论,推导出能同时考虑氧化物热生长及其形貌、CaO-MgO-Al2O3-SiO2(CMAS)沉积、温度变化、材料参数不匹配的危险界面应力分布的解析解。分别研究热循环中氧化层热生长和CMAS沉积对热障涂层界面应力的影响,并从应力演化的角度对危险界面微裂纹的萌生和扩展进行预测。结果理论分析显示,当系统经历24个热循环后,陶瓷层/氧化物层界面波谷应力σv从最初的0增加到301.44MPa。氧化物层/粘结层界面波峰应力σp从最初的617MPa增加到1189.89MPa。当CMAS沉积深度hCMAS从0增加到150μm时,应力σv从170.26MPa增加到443.37 MPa,应力σp从1317.83 MPa减小到1050.17 MPa。结论氧化物热生长可以促使陶瓷层/氧化物层界面波谷和氧化物层/粘结层界面波峰裂纹的萌生和扩展。CMAS沉积将进一步促使陶瓷层/氧化物层界面开裂,然而对氧化物层/粘结层界面的开裂有抑制作用。解析解的计算结果与先前的有限元分析结果和模型试验结果相近,证明了该理论方法计算界面应力的准确性。  相似文献   

10.
基于IN738高温合金基体上涂覆的热障涂层系统(Thermal barrier coating system,TBCs),分析热循环和热梯度机械疲劳加载条件下涂层的应力分布及演变。通过有限元分析研究了热生长氧化层(Thermally growth oxidation,TGO)的应力分布,以预测不同载荷作用下TBCs的失效行为。结果可知,在热循环的基础上施加应变载荷会造成TGO应力性质及大小的改变。只施加温度载荷,在加热过程中TGO/粘结层(Bond coat,BC)界面波峰位置会承受轴向较大的拉伸应力,裂纹多会在此处萌生,且以层间开裂的方式失效。而在温度与机械载荷的共同作用下,冷却过程中会承受较大的拉伸应力,显著增大的轴向应力与径向应力共同作用,使垂直于TGO/BC界面的裂纹沿着界面方向扩展,从而造成陶瓷层(Top coat,TC)剥落。进一步对比分析了同相和反相加载时的应力分布,结果表明反相加载时一次循环周期内会产生拉伸平均应力,更易发生TBCs的失效。  相似文献   

11.
A set of thermal barrier coated (TBC) specimens was made from CMSX-4 superalloy containing curved surfaces that are representative of typical turbine blades with a bond coat (BC) of HVOF ‘Amdry 995’ and a top coat (TC) that was air plasma sprayed 7 wt% Y2O3 stabilised ZrO2. The specimens were thermally oxidised at 925 °C for times between 100 and 10,000 h. The residual stresses, both in the TC and the thermally grown oxide (TGO) that formed between the TC and BC upon thermal exposure, were measured on the cross-sections using Raman spectroscopy and photo-stimulated luminescence spectroscopy, respectively. A constraint upon the residual stress in the TC in the vicinity of the interface was found to be due to the growth of TGO. The corresponding microstructural evolution of the TBC and TGO was investigated using scanning electron microscopy to assist understanding of the residual stress distribution within the TC thickness and the undulating TGO. The effect of substrate curvature on the strain levels in the TC was evaluated and considered with respect to the macro-scale failure modes of the coating system.  相似文献   

12.
用超音速氧燃料热喷涂在铁基合金上制备热障涂层粘结层,用大气等离子热喷涂技术制备陶瓷层。研究了高温氧化后其界面化合物和残余应力的演变。结果表明,随着高温氧化的进行,TGO和BC/基体界面均有氧化物生成,但生长形貌和趋势并不一致。TGO由Al2O3层与尖晶石层组成;BC/基体界面氧化物为单一Al2O3,且存在层状和块状两种形貌。合金的热化学动力学引起元素Co和Ni向基底扩散比较严重,Al元素扩散止于界面氧化物层,基本不向铸铁基底扩散,Fe元素会向粘结层方向扩散。TGO残余应力的演化分为0~15 h和15~100 h 2个阶段,且残余应力与TGO的凹凸生长形貌及其物相组成密切相关;而BC/基体界面单一氧化物的残余应力基本稳定,不受其生长形貌影响。  相似文献   

13.
In thermal barrier coating (TBC) systems, spinel and nickel oxide formed in an oxidizing environment are believed to be detrimental to TBC durability during service at high temperatures. The present study shows that in an air-plasma-sprayed (APS) TBC with Co–32Ni–21Cr–8Al–0.5Y (wt.%) bond coat, pre-oxidation treatments in low-pressure oxygen environments can suppress the formation of the detrimental oxides by promoting the formation of an Al2O3 layer at the ceramic topcoat/bond coat interface. The development of the thermally grown oxide (TGO) layer generally exhibits a three-stage growth phenomenon that resembles high temperature creep. The pre-oxidation treatments reduce the growth rate and extend the steady-state growth stage, leading to an improved durability. Crack propagation in the TBC proceeds via opening and growth of pre-existing discontinuities in the ceramic topcoat, assisted by crack nucleation and growth associated with the TGO. Crack propagation during thermal cycling appeared to be controlled by TGO growth, and the maximum crack length and TGO thickness generally have a power law relationship.  相似文献   

14.
目的探索热障涂层系统(TBCs)在热震过程中的损伤行为。方法基于材料能量储存极限,推导了适用于平面复杂应力情形的温度相关性临界失效能密度判据,进而利用该临界失效能密度判据与ABAQUS有限元软件相结合,研究了热生长氧化层(TGO)凸起的热障涂层系统在冷却热震过程中的损伤行为。结果对于TGO层凸起的热障涂层系统,计算了冷却热震过程中陶瓷层(TC)和TGO层的失效能密度分布云图,并根据最大失效能分布情况分析了TBCs在热震过程中各层材料的可能破坏位置,所得结果与实验吻合较好。在对TBCs的冷却热震损伤行为模拟计算中发现,当TC层的强度比较低时,热震会使TC层上表面产生往内部扩展的垂直裂纹;当TC层强度达到某一定值时,首先发生热震破坏的位置由TC层上表面变成了TGO层与粘结层(BC)的界面处,即TBCs的各层破坏顺序发生了变化。结论使用临界失效能密度准则来判断热障涂层在冷却热震过程中的损伤行为,比单纯使用某一方向应力更为准确,并能准确判断损伤起始位置和演化情况,从而更全面地反映热障涂层在热震过程中的损伤破坏行为。  相似文献   

15.
Thermal Barrier Coatings with HVOF NiCrAlY Bond Coat is prepared on nickel-based superalloy substrates. The lifetime of the coating is about 1630 h for 1-h cycle at 1050 °C. Growth of the TGO (thermally grown oxide) approximately follows a parabolic kinetics, and the TGO presents a bi-layered structure. Failure of the coating occurs near the interface between the mixed oxides layer of TGO and top coat. A finite element method is employed to analyze the stress distribution in the coating. The results show that maximum stresses occur at the top coat/TGO interface near the edge of the coating. The maximum radial stress for TGO consisting of spinel and Al2O3 is about five times larger than that of Al2O3, while the maximum axial stress is about ten times larger. The mixed oxide layer of TGO plays an important role in the premature failure of TBCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号