首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
电解液对 2A12 铝合金硬质阳极氧化膜层性能的影响   总被引:3,自引:1,他引:2  
目的对硫酸、混合酸电解液体系中制备的2A12铝合金硬质阳极氧化膜层性能进行研究,找出混合酸电解液体系对2A12铝合金硬质阳极氧化过程的影响机理,为改善膜层的耐蚀性能提供一种思路。方法通过对膜层厚度、显微硬度、微观形貌、极化曲线、交流阻抗试验结果进行分析,研究不同电解液对2A12硬质阳极氧化膜层性能的影响。结果在有机酸的活性吸附作用下,混和酸电解液解决了硫酸电解液制备2A12铝合金硬质阳极氧化膜存在的厚度、硬度不均匀及烧蚀现象,制备的膜层厚度范围为35~38μm,硬度范围为386~407HV0.05,具有厚度和硬度分布均匀、离散性小的特点。极化曲线及电化学交流阻抗分析表明,混合酸电解液体系中制备的2A12铝合金硬质阳极氧化膜层未进行封孔处理时,膜层的自腐蚀电位为-619.93 m V,阻挡层电阻为1.4×105Ω·cm2;封孔处理后,膜层的自腐蚀电位为-74.69m V,阻挡层电阻为2.376×106Ω·cm2。这说明封孔处理能够改善阻挡层的质量,显著提高膜层的耐腐蚀性能。结论采用混合酸电解液体系能够稳定制备出2A12铝合金硬质阳极氧化膜层,制备的膜层应进行封孔处理。  相似文献   

2.
目的 研究恒流模式下阴极电流密度对6061铝合金在含Na2WO4的电解液中制备的微弧氧化膜厚度、形貌、相组成及耐磨性能的影响。方法 固定阳极电流密度为5.0 A/dm2,阴极电流密度分别为0、1.25、2.5、3.75、5.0 A/dm2,对6061铝合金进行微弧氧化40 min。用涡流测厚仪测量了氧化膜的厚度,用扫描电镜观察了微弧氧化膜的表面形貌和截面形貌,用能谱分析仪分析了氧化膜的表面成分,用X射线衍射分析仪分析了微弧氧化膜的相组成,用往复式摩擦磨损试验机测试了氧化膜的耐磨性能。结果 随着阴极电流密度的增加,氧化膜内的W含量逐渐减少,氧化膜颜色逐渐变浅,氧化膜厚度逐渐增加。微弧氧化膜的主要组成相为α-Al2O3和γ-Al2O3。当阴极电流密度从0 A/dm2增加到3.75 A/dm2时,氧化膜内孔洞的数量和尺寸逐渐减少,孔洞到氧化膜/基体界面的距离逐渐增加,氧化膜的耐磨性能逐渐提升。当阴极电流密度为3.75 A/dm2时,氧化膜的磨损率最低,仅为1.07×10‒4 mm3/(N.m)。但阴极电流密度增加到5.0 A/dm2时,氧化膜表层出现孔洞和剥落,耐磨性能下降。结论 阴极电流的加入有助于增加6061铝合金微弧氧化膜的厚度,提高氧化膜的致密性和耐磨性能,但过高的阴极电流会导致氧化膜表层出现孔洞,降低耐磨性能。  相似文献   

3.
The corrosion deterioration process of plasma electrolytic oxidation (PEO) coatings on AM50 magnesium alloy prepared from two different based electrolytes, i.e., an alkaline phosphate electrolyte and an acidic fluozirconate electrolyte, were investigated using electrochemical impedance spectroscopy (EIS) in a 0.1 M NaCl solution with pH of 3, 7 and 11, respectively. It was found that the PEO coating formed in alkaline phosphate electrolyte, which was composed mainly of MgO, suffered from rapid chemical dissolution and lost its protection capability very quickly in acidic NaCl solution (pH 3). The chemical dissolution of this PEO coating was retarded in neutral NaCl solution (pH 7) and the corrosion damage was localized in this environment. On the other hand, in the alkaline NaCl solution (pH 11), the MgO coating underwent only slight degradation. The PEO coating produced in acidic fluozirconate electrolyte, the failure was marked by the flaking-off of the large areas of coating in acidic NaCl solution (pH 3). However, in the neutral and alkaline NaCl solutions, the coating underwent only a slight degradation without any observable corrosion damage in the 50 h test. The results showed that the deterioration process of PEO coated magnesium alloy was governed mostly by the pH of NaCl solution and it was also strongly related to the microstructure and composition of the PEO coatings.  相似文献   

4.
The kinetics of crack growth under the conditions of stress corrosion cracking of aluminum alloys in electrolytes with different anion composition and pH values from 0 to 13 has been studied. It is shown that for the majority of alloy-electrolyte systems anodic polarization accelerates whereas cathodic polarization decelerates crack growth. For “chromic acid – sodium chloride” electrolyte it is shown that cathodic polarization under the conditions of stress corrosion cracking (SCC) has an ambiguous effect on crack growth. The behaviour of A127-;1 alloy is taken as an illustration of such SCC cracking growth in these electrolytes.  相似文献   

5.
综述了微弧氧化技术的发展历程、成膜机理,论述了铝合金微弧氧化的特点。基于铝合金微弧氧化工艺研究现状,详细阐述了氧化时间、占空比、电压、电流密度、电解液浓度、基体粗糙度、纳米颗粒添加剂以及复合工艺等对铝合金微弧氧化膜层的组织与性能的影响。如电流密度会影响涂层的生长机理,使膜层的表面结构和内部缺陷产生较大的差异;采用不同的电解液所得到的膜层的厚度和粗糙度有明显的区别;在不同的电压参数下膜层的均匀性及膜层中微孔的尺寸大不相同;制备微弧氧化复合涂层以及采用纳米增强颗粒可使膜层的结构和性能有大幅提升。通过改变以上影响因素对铝合金微弧氧化膜层组织和结构加以调控,从而实现了对膜层性能的优化,如膜层的硬度、耐磨性、耐腐蚀性、抗疲劳性能的提高。最后对铝合金微弧氧化的发展方向提出了展望。  相似文献   

6.
采用高温拉伸试验、金相显微镜、扫描电镜等方法研究了Si、Zr、Fe合金化对超薄铝合金翅片高温性能和组织的影响。结果表明,3003和改性3003铝合金(3003mod)的强度均随着拉伸温度的升高而降低,而伸长率均先增大而后降低。3003mod铝合金在500℃时屈服强度较3003合金提高了32.2%。合金化显著提高了3003mod铝合金中纳米颗粒数量,降低了粗大微米相数量,其组织特征抑制了高温拉伸过程中的二次再结晶形核,较3003合金晶粒更粗、长宽比更大。二次再结晶是导致500℃下两种合金的伸长率较300℃下的急剧减小的根本原因。  相似文献   

7.
Single Ni and Ni-Cu alloy films were electrodeposited on polycrystalline Ti substrates from electrolytes with different pH values under potentiostatic control. The deposition processes of the films were evaluated by the current-time transients recorded during deposition. The analysis of the transients clearly showed that the initial deposition of Ni is affected by the electrolyte pH, while in the Ni-Cu alloys the Cu concentration of the electrolyte is more effective than the electrolyte pH. The microstructural analysis by X-ray diffraction (XRD) indicated that the texture degree in both Ni and Ni-Cu alloy films, which have face-centered cubic (fcc) structure, changes with the electrolyte pH. The surface morphology of the samples was investigated using the scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was observed from SEM and AFM studies that the surface roughness of Ni deposits is not considerably affected by the electrolyte pH, while in Ni-Cu alloy films it changes significantly with both the electrolyte pH and the Cu concentration. Accordingly, the surface roughness of the Ni-Cu alloy films increased as electrolyte pH decreased and Cu concentration increased.  相似文献   

8.
TC4 合金微弧氧化层的耐磨性和耐蚀性   总被引:2,自引:2,他引:0  
目的对比不同电解液体系中制备的陶瓷膜层的耐磨损和耐腐蚀性能,判断实验条件下陶瓷膜性能最优的电解液体系。方法在相同的电参数工艺下,分别在Na Al O2,(Na PO3)6和Na2Si O3电解液体系中对TC4合金进行微弧氧化处理,处理时间为15 min。分析陶瓷层的表面形貌、成分和相结构。进行干摩擦条件下的摩擦磨损实验,对比TC4合金及三种陶瓷膜的耐磨性。通过测试极化曲线,对比TC4合金及三种陶瓷膜的耐蚀性。结果在Na Al O2,(Na PO3)6,Na2Si O3电解液体系中获得的陶瓷层表面呈现出多孔和局部凸起的相似表面特征,但相组成存在差异,主要相分别为Al2Ti O5,Al PO4和Ti O2。摩擦磨损实验表明,在10 N载荷下,以Si3N4陶瓷球作为摩擦配副,陶瓷层的磨损失重相对基材均显著减小,其中(Na PO3)6-陶瓷层失重约为基材的1/22。极化曲线分析表明,在模拟油田采出液作为腐蚀液的条件下,与TC4合金相比,陶瓷层的Ecorr显著正移,Jcorr明显减小,其中(Na PO3)6-陶瓷层的Ecorr从-0.311 V正移至0.777 V,Jcorr从9.634×10-7A/cm2减小到2.595×10-8A/cm2。结论微弧氧化处理能够显著改善TC4合金的耐磨性和耐蚀性,其中(Na PO3)6-陶瓷层的综合性能较好,有望满足TC4合金服役于油田环境时的要求。  相似文献   

9.
铝合金的锌系磷化处理   总被引:1,自引:0,他引:1  
以LY12铝合金为试样,讨论了腐蚀加速剂、酸比、磷化温度、磷化时间、磷化添加剂对铝合金磷化的影响,得出了相应的最佳工艺参数.铝合金磷化反应机理与钢铁材料的类似,其重要条件之一就是其表面能被酸性氟化物适度腐蚀.  相似文献   

10.
The behavior of Cu-Ni-Ag-Al alloy used as anode for aluminum electrolysis was directly visualized in a two-compartment see-through cell during electrolysis, and its performances were tested at 850℃ in acidic electrolyte molten salts consisting of 39.3%NaF-43.7%AlF3-8%NaCl-5?F2-4%Al2O3 for 40 h in a laboratory cell. The results show that nascent oxygen oxidizes the anodic surface to form oxide film at the beginning of electrolysis. X-ray diffraction analysis of alloy surface show that the oxide film on the anodic surface consists of CuO, NiO, Al2O3,CuAl2O4 and NiAl2O4. However, SEM image shows the oxide film is porous, loose and easy to fall into electrolyte and to contaminate aluminum. The corrosion mechanism of metal anodes was analyzed.  相似文献   

11.
通过分析钛合金电解加工时金属基体表面点蚀、钝化过程,研究了NaNO_3电解液、NaCl电解液及其混合电解液对TC4钛合金的电化学溶解特性的影响。对比分析不同成分电解液中的工件表面质量和加工效率,最终选用质量分数为10%NaNO_3和20%NaCl的混合电解液进行TC4钛合金异形型腔电解加工工艺实验。结果表明:采用混合电解液可实现TC4钛合金异形型腔的高效加工,稳定加工速度可达2.8 mm/min;当阴极进给速度为2.4 mm/min时,型腔一致性较好。  相似文献   

12.
Measurements of the rate at which aluminum carbide dissolves in aluminum smelting electrolytes show that the dependence on electrolyte acidity (or excess aluminum fluoride concentration) follows a similar trend to that for the carbide saturation solubility, indicating mass transfer control. However, since the electrolyte supply at the aluminum/cathode carbon interface is limited, preferential corrosive wear will occur in areas where there is maximum accumulation of sludge and subsequent back feeding. The rate of the carbide corrosion can be reduced by adding Ti(IV) in relatively small concentrations (about 100 ppm); this also causes wetting of the carbon by the electrolyte. With further increases in the Ti(TV) concentrations—typically to about 350 ppm—apparent wetting with the metal also occurs, but under such conditions an electronically conducting electrolyte/carbide layer exists between the carbon and the wetted metal. Because of the higher viscosity of the titanium-rich metal phase when metal wetting occurs, the thickness of the film increases significantly. This mitigates titanium diboride formation on the carbon surface when the electrolyte contains both titanium oxide and boron oxide.  相似文献   

13.
在酸性化学镀Ni-P合金镀液中加入硫酸铜和光亮剂,成功研制了一种钢铁件的全光亮化学镀Ni-Cu-P合金工艺,检测了镀液和镀层性能,探讨了主要成分和工艺条件对化学镀Ni-Cu-P合金镀层性能的影响.结果表明,所形成的Ni-Cu-P合金镀层结晶细致、光泽高,具有较高的装饰性,镀层耐蚀性、耐磨性和镀液稳定性优于酸性化学镀Ni-P合金工艺.  相似文献   

14.
在微弧氧化液中添加Cr2O3微粒对6063铝合金进行微弧氧化,研究了电解液中Cr2O3的浓度和各项工艺参数对复合膜层膜厚及表面形貌的影响,并用SEM,EDS等手段对复合膜层的微观形貌及组成进行了表征。结果表明:膜层厚度及Cr2O3的复合量均随着溶液中Cr2O3的含量、电流密度、微弧氧化时间的增加而增加,电解液的pH值对复合沉积量也有影响;复合膜层表面含有大量Cr2O3微粒,且Cr2O3微粒已沉积到了氧化膜内部。  相似文献   

15.
A directed attack, denominated as exfoliation-like attack (ELA), is observed in Al-Mg-Si alloy AA6016 exposed to aggressive electrolyte conditions. This localized corrosion propagates restricted to a specific plane. Immersion experiments combined with in situ microtomography and SEM/EBSD characterization showed that the ELA path does not follow aligned intermetallic phases, texture or grain boundaries. Si concentration variation in solid solution is one factor which correlates with the propagation of this attack. In a model alloy, the influence of Si composition gradients on corrosion susceptibility was demonstrated in mild neutral electrolytes (oxide layer influence) and in aggressive acidic conditions (active dissolution rates).  相似文献   

16.
细晶铝锭熔炼的6063铝合金组织与性能研究   总被引:1,自引:2,他引:1  
细晶铝锭是采用纯铝的电解设备,通过向铝电解槽中添加TiO2,直接电解生产的晶粒细化的铝锭.采用细晶铝锭熔炼6063铝合金,并对其组织性能进行研究,结果表明:细晶铝锭熔炼6063铝合金,由于其电解加钛方式,生产成本低廉;细晶铝锭熔炼的6063铝合金型材,晶粒细小均匀,表面性能及力学性能完全满足GB/T 5237的要求;细晶铝锭、RE(富铈混合稀土)元素联合细化,细晶铝锭、RE、B元素联合细化熔炼的6063铝合金,抗拉强度与添加Al-5Ti-1B熔炼的6063铝合金相当,而伸长率提高20%,并可获得更优异的表面性能.  相似文献   

17.
Magnetocaloric La(Fe,Si)13-based alloys are promising materials for magnetic cooling systems but their limited corrosion resistance in water-based heat transfer fluids is critical. The corrosion behavior of as-cast and annealed La-Fe-Si alloy samples was analyzed in comparison to that of La and Fe for evaluation of the impact of alloy chemistry and microstructure. Electrochemical studies were conducted in defined electrolytes starting with aerated distilled water (pH = 6) for assessing the influence of pH value changes and anion contaminations. Specifically, forced flow electrolyte conditions were applied which are closer to operation conditions of real magnetocaloric regenerator beds than stagnant ones. Corroded sample surfaces were analyzed with SEM to assess damage mechanisms. The reactive nature of the alloy constituents determines the high corrosion activity and limited passivation ability of La-Fe-Si alloys. Their exposure to distilled water is particularly detrimental under stagnant conditions as local fluid acidification enhances corrosion processes. These are based on galvanic coupling between the phases with different corrosion activities: La-rich phases > La(Fe,Si)13-based matrix > alpha-Fe(Si). Laminar fluid flow is beneficial for alloy surface passivation. But anion contaminants like sulfate or hydrogen phosphate ions counteract the weak passivity in flowing distilled water. While acidic conditions lead to instable corrosive states, a pH value control of the heat transfer fluid at alkaline conditions is effective for stable passivity of the alloy surface. Also, the applicability of a phosphate conversion coating treatment in 0.15 M NaH2PO4 (pH = 4) was evaluated and prospects of this approach are discussed.  相似文献   

18.
The electrochemical behaviour of a near‐β Ti‐13Nb‐13Zr alloy for the application as implants was investigated in various solutions. The electrolytes used were 0.9 wt% NaCl solution, Hanks' solution and a culture medium known as minimum essential medium (MEM) composed of salts, vitamins and amino acids, all at 37 °C. The electrochemical behaviour was investigated by the following electrochemical techniques: open circuit potential measurements as a function of time, electrochemical impedance spectroscopy (EIS) and determination of polarisation curves. The obtained results showed that the Ti alloy was passive in all electrolytes. The EIS results were analysed using an equivalent electrical circuit representing a duplex structure oxide layer, composed of an inner barrier layer, mainly responsible for the alloy corrosion resistance, and an outer and porous layer that has been associated to osteointegration ability. The properties of both layers were dependent on the electrolyte used. The results suggested that the thickest porous layer is formed in the MEM solution whereas the impedance of the barrier layer formed in this solution was the lowest among the electrolytes used. The polarisation curves showed a current increase at potentials around 1300 mV versus saturated calomel electrode (SCE), and this increase was also dependent on the electrolyte used. The highest increase in current density was also associated to the MEM solution suggesting that this is the most aggressive electrolyte to the Ti alloy among the three tested solutions.  相似文献   

19.
7A52铝合金双丝焊接头的组织与性能   总被引:12,自引:4,他引:8       下载免费PDF全文
余进  王克鸿  徐越兰  刘永 《焊接学报》2005,26(10):87-89
采用5A56焊丝对7A52铝合金进行双丝气体保护焊,对焊接接头的力学性能和显微组织进行了研究。结果表明,7A52铝合金焊接性能较好。因焊丝合金化学成分和结晶过程的影响,焊缝处是合金接头的薄弱环节。对于中厚7A52铝合金板,采用双丝气体保护焊方法可得到优良的焊接接头。  相似文献   

20.
Corrosion-resistant films were fabricated by the microarc oxidation technique on the LC4 zinc-containing aluminum alloy in silicate electrolyte. The electrochemical corrosion behaviors of LC4 alloy, with and without films, were evaluated using potentiodynamic polarization curves. Galvanic currents and galvanic potentials of bare and coated alloys coupled with copper were measured using the zero-resistance technique. Scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) was used to analyze the microstructure of films and the corrosion morphology before and after corrosion testing. After microarc discharge treatment, the corrosion potential was increased and the corrosion current was significantly reduced. For a thin film sample, the galvanic current is similar to that of the bare alloy. However, a thick film can protect the LC4 alloy against galvanic corrosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号