首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
To enhance the bonding between hydroxyapatite (HA) coating and titanium alloy substrate, HA/TiO2 composite coatings have been fabricatedvia plasma spraying. Bonding strength evaluation, simulated body fluid tests, and cell culturein vitro were carried out to characterize the composite coatings. The results obtained showed that the addition of TiO2 to HA coating improved the bonding strength of the coating significantly. After being immersed in simulated body fluid (SBF) for a period, the surfaces of HA/TiO2 composite coatings were completely covered by carbonate-containing apatite, which indicated that the coatings possess good bioactivity. Thein vitro cell culture indicated good cytocompatibility for HA/TiO2 composite coatings.  相似文献   

2.
Chemical treatment was performed to modify the surfaces of the TiO2-based (TOB) film containing P for improving its bioactivity. The apatite-forming ability of the chemically treated TOB (C-TOB) film was enhanced due to the formation of hydroxyl-functionalized surface during the SBF immersion process. However, further heat treatment of the C-TOB films formed crystalline sodium titanate, showing poor ability to release Na+ ions, which does not facilitate the formation of hydroxyl-functionalized surface, thus lowering the apatite-forming ability. Firstly, amorphous Ca- and P-containing precipitates formed during the SBF immersion process, eventually transformed to crystalline biomimetic apatite, exhibiting a porous structure on two-scales of micron and nanometer levels. The preliminary cell experiment showed that the C-TOB film has good biocompatibility.  相似文献   

3.
Titania coatings were fabricated on titanium alloy substrate using atmospheric plasma spraying technology, and treated by sulfuric acid (H2SO4) at room temperature for 24 h. The as-sprayed and acid-treated titania coatings were soaked in simulated body fluid (SBF) to investigate the formation of apatite on their surfaces. Human mesenchymal stem cells (MSCs) were used to evaluate the cytocompatibility of titania coatings. The results indicated that bone-like apatite was formed on the surfaces of acid-treated titania coatings after soaked in SBF for a period of time. The concentration of sulfuric acid had an effected on the bioactivities of titania coatings. The bioactivity of titania coating could not be improved by 0.01 M sulfuric acid treatment. The MSCs could attach, grow and proliferate well on the surface of titania coatings. The results showed that plasma-sprayed titania coating after acid treatment exhibited favorable bioactivity and cytocompatibility.  相似文献   

4.
采用脉冲电化学沉积的方法,在新开发的Mg-Nd-Zn-Zr合金(JDBM)表面制备出了羟基磷灰石(HA)涂层,并对其耐蚀性能和血液相容性进行了研究.结果表明,表面改性后的JDBM镁合金具有更好的耐腐蚀性能,腐蚀后涂层保持了良好的完整性,析氢试验也表明涂层对基体在仿生腐蚀环境中有一定的保护作用,且不会引起模拟体液pH值较...  相似文献   

5.
In order to obtain bioactivity on the surface of titanium alloy, the bioceramic coating on Ti–6Al–4V was designed and fabricated by laser cladding. The microstructure and bioactivity of laser-cladded bioceramic coating were investigated in vitro via soaking in a simulated body fluid (SBF). The results indicated that the laser-cladded bioceramic coating was metallurgically bonded to the substrate and contained such bioactive phases as hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP). A bone-like apatite layer was spontaneously formed on the surface of laser-cladded coating merely soaked in SBF for 7 days. And the appearance of flake-like and cotton-like morphology, which is the characteristic morphology of apatite, offered an advantageous condition for osseo-connection. The formation ability of apatite was remarkably accelerated on the surface of laser-cladded bioceramic coating compared with the untreated titanium alloy substrate.  相似文献   

6.
Effects of plasma treatment on bioactivity of TiO2 coatings   总被引:1,自引:0,他引:1  
In this work, nano-TiO2 powders were deposited on titanium alloy substrates by atmospheric plasma spraying, followed by plasma immersion ion implantation (PIII) using hydrogen, oxygen and ammonia gases. The bioactivities of PIII-treated TiO2 coatings were evaluated by the formation of apatite on their surface after soaked in simulated body fluids (SBF) for a period of time. As-sprayed TiO2 coating is composed of rutile, anatase and TiO2−x (most of them is Ti3O5). After immersion in SBF for two weeks, the hydrogen PIII-treated TiO2 coating can induce bone-like apatite formation on its surface but apatite cannot be formed on the surface of as-sprayed and oxygen, ammonia PIII-treated TiO2 coatings. The results obtained indicated that a hydrogenated surface plays a very important role to induce bioactivity of TiO2 coatings.  相似文献   

7.
The effect of Ti-OH groups on bioactivity of NaOH treated titanium coating was investigated in this paper. The NaOH-heat treatment was also applied to modify the titanium coating for comparison. The results show that the amount of Ti-OH groups was important to induce apatite formation on the treated titanium coating. When the NaOH treated titanium coating was exposed to SBF, it released Na+ ions from the sodium titanate layer on its surface into the SBF via exchanging with H3O+ ions in the fluid and Ti-OH groups were rapidly formed on the surface. So the NaOH treated titanium coating has good bioactivity in simulated body fluid (SBF). The amount of Ti-OH groups on the titanium coating was reduced after heat treatment, so the bioactivity of NaOH-heat treated titanium coating was obviously affected.  相似文献   

8.
Zirconia coatings stabilized with different calcia content (12.8 mol%, 16 mol% and 30 mol%) were fabricated on titanium alloy substrates using atmospheric plasma spraying technology. The in-vitro bioactivity of coatings was evaluated by simulated body fluid (SBF) soaking test. The morphology and phase composition of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), micro Raman spectroscopy, energy dispersive spectrometry (EDS) and infrared spectroscopy (IR). The results showed that the apatite was formed on the surface of the calcia stabilized zirconia coatings soaked in SBF for 28 days and the formation ability of apatite decreased with the increase in calcia content of the coating. The bioactivity of zirconia coatings was thought to be related to the Zr-OH formed on their surfaces during the phase transformation in the presence of water. Osteoblast-like MG63 cells were cultured on the surfaces of the coatings to evaluate their cytocompatibility. Results showed that MG63 cell grew and proliferated well on all coating surfaces, indicating that plasma sprayed calcia stabilized ZrO2 coatings were cytocompatible.  相似文献   

9.
目的在医用镁合金骨螺钉表面构建羟基磷灰石涂层,有效控制其降解速率。方法利用微弧电泳/水热复合方法,在形貌复杂的骨螺钉表面制备涂层。该方法首先利用电解抛光对骨螺钉表面进行表面预处理,采用微弧电泳技术在其表面制备羟基磷灰石涂层,再利用水热合成对微弧电泳涂层进行封孔。利用XRD、SEM、AFM等分析手段对涂层显微结构进行分析,利用体外浸泡实验和电化学实验对涂层耐腐蚀性能及其对钙磷盐的诱导特性进行了评价。结果在电解抛光电流0.14 A、抛光时间2 min的工艺条件下进行电解抛光预处理,可以提高基体和涂层的结合性能。由于骨螺钉的特殊形状,在微弧电泳电解液中添加丙三醇,并通过调整电解液中丙三醇含量优化微弧电泳工艺(电压155 V,反应时间20 min),能有效抑制尖端放电现象,防止膜层组织疏松和大量的氧化物堆积,以及涂层剥落甚至基体烧蚀的现象。再优化水热合成工艺参数(处理液p H值8.5,反应时间1.5 h,反应温度393 K)对微弧电泳涂层进行封孔,得到微弧电泳/水热复合涂层。结论微弧电泳/水热复合涂层表面形貌为菜花状结构,由纳米棒状羟基磷灰石组装而成,均匀致密,结晶性好。电化学腐蚀测试表明,制备复合涂层后,骨螺钉的腐蚀电流密度降低了一个数量级。在模拟体液中浸泡6天,骨螺钉的形貌依然完整,说明水热复合涂层在改善生物相容性的同时,提高了骨螺钉的耐腐蚀性能。但微动摩擦磨损测试显示,水热复合封孔处理后磨损性能下降。  相似文献   

10.
Mg-based alloys received significant attention for temporary implant applications while, their applications have been limited by high degradation rate. Therefore, silver–zeolite doped hydroxyapatite (Ag-Zeo-HAp) coating was synthesized on TiO2-coated Mg alloy by physical vapour deposition (PVD) assisted electrodeposition technique to decrease the degradation rate of Mg alloy. X-ray diffraction (XRD) analysis and field emission scanning electron microscopy (FE-SEM) images showed the formation of a uniform and compact layer of Ag-Zeo-HAp with a thickness of 15 μm on the TiO2 film with a thickness of 1 μm. The potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) tests indicated that corrosion resistance of Mg-Ca alloy was considerably increased by the Ag-Zeo-HAp coating. The bioactivity test in the simulated body fluid (SBF) solution showed that a dense and homogeneous bonelike apatite layer was formed on the Ag-Zeo-HAp surface after 14 d. Investigation of antibacterial activity via disk diffusion and spread plate methods showed that the Ag-Zeo-HAp coating had a significantly larger inhibition zone (3.86 mm) towards Escherichia coli (E. coli) compared with the TiO2-coated Mg alloy (2.61 mm). The Ag-Zeo-HAp coating showed high antibacterial performance, good bioactivity, and high corrosion resistance which make it a perfect coating material for biomedical applications.  相似文献   

11.
There have been a significant advances made in the field of bioceramics, particularly hydroxyapatite (HA) during the past 10 years. Emphasis has now shifted towards designing HA with enhanced bioactivity for bone tissue repair. The aim of this study was to assess whether surface wettability can be correlated with cellular interactions with silicon-substituted hydroxyapatite (SiHA)-coated titanium (Ti) substrates. SiHA thin coatings of varying Si compositions were deposited on Ti substrates via a magnetron co-sputtering technique. These coatings were then subjected to an in vitro study using primary human ostoeblast (HOB) cells, to evaluate their biological property. HOB cells showed initial poor adhesion and spreading on hydrophobic Ti surface. The application of HA or SiHA thin coatings on Ti substrates by magnetron co-sputtering technique renders the surface more hydrophilic, with water contact angles between 30 and 40°. HOB cells attached, spread and proliferated well on these coatings. Enhanced calcification (formation of calcium phosphate nodules across the collagenous matrices) was observed on SiHA coatings with increasing Si content. This interdisciplinary paper highlighted that enhanced bioactivity was associated with surface wettability. Producing a nanostructured HA coating on a Ti substrate by magnetron sputtering resulted in the promotion of cell proliferation and calcification, and the latter was further enhanced with Si substitution. Hence, SiHA thin coating holds great potential as an alternative dental material.  相似文献   

12.
We report on poly(ε-caprolactone) (PCL) containing bovine bone hydroxyapatite (HA) and hydroxyapatite-silver (HA-Ag) composite nanofibers prepared via an electrospinning process for the biomedical applications. Bioactivity test was conducted by incubation in simulated body fluid (SBF). The morphology, structure and thermal properties of the PCL, PCL/HA and PCL/HA-Ag composite nanofibers before and after immersion in SBF were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy and thermogravimetry (TGA). SEM images revealed that the nanofibers are well-oriented and incorporated the HA-Ag nanoparticles well. The SBF incubation test confirmed that the fast formation of apatite-like materials suggests in vitro bioactive behavior of the nanofibers. Mechanical study revealed that the yield stress of PCL/HA-Ag composite nanofibers showed a higher value than that of PCL/HA composite, possibly due to the addition of metallic Ag nanoparticles. This study demonstrated that electrospun PCL/HA and PCL/HA-Ag composite nanofibers activates bioactivity and supports growth of apatite-like materials.  相似文献   

13.
The present contribution aimed at exploring the HVOF deposition process of bioactive multilayered HAp/titania composite coatings on Ti-6Al-4V substrates. These coatings can be regarded as functionally graded as the weight fraction of the constituent phases gradually changes layer by layer, from pure titania at the substrate–coating interface to pure HAp at the outer surface of the coating. Microstructural investigations were carried out on the graded coatings using scanning electron microscopy coupled with EDS microanalysis to confirm that the compositional gradient met the initial specifications. On the other hand, the in vitro properties of the coatings were studied in simulated body fluid (SBF) for periods ranging from 1 to 14 days. Moreover, mechanical characterization of both as-sprayed and soaked coatings in SBF was carried out by performing Vickers microhardness measurements through their cross section. The apparent interfacial toughness (KCa) of HAp/titania coatings, which is representative of their interfacial crack initiation resistance, was determined by performing indentation tests at the coating–substrate interface. Fracture toughness of both pure hydroxyapatite and functionally graded coatings was also calculated. The results revealed that the graded coatings produced in this work exhibited good reactivity and mechanical stability after being immersed in SBF indicating their potential for biomedical applications.  相似文献   

14.
HA/316L stainless steel(316L SS) biocomposites were prepared by hot-pressing technique. The formation of bone-like apatite on the biocomposite surfaces in simulated body fluid(SBF) was analyzed by digital pH meter, plasma emission spectrometer, scanning electron microscope(SEM) and energy dispersive X-ray energy spectrometer(EDX). The results indicate that the pH value in SBF varies slightly during the immersion. It is a dynamic process of dissolution-precipitation for the formation of apatite on the surface. With prolonging immersion time, Ca and P ion concentrations increase gradually, and then approach equilibrium. The bone-like apatite layer forms on the composites surface, which possesses benign bioactivity and favorable biocompatibility and achieves osseointegration, and can provide firm fixation between HA60/316L SS composite implants and human body bone.  相似文献   

15.
In this study, a combination of surface modification process and the electrochemical deposition of Ca-P coatings was used for the modification of the Nitinol shape memory alloy. DSC, SEM, GIB-XRD, FT-Raman, XPS, and FTIR measurements were performed for the characterization of the samples. Results indicated that chemical etching and boiling of the samples in distilled water formed TiO film on the surface. After the chemical modification, subsequent aging of the sample, at 470 °C for 30 min, converted the oxide film to a stable structure of titanium dioxide. In that case, the treated substrate indicated a superelastic behavior. At the same electrochemical condition, the treated substrate revealed more stable and uniform Ca-P coatings in comparison with the abraded Nitinol substrate. This difference was attributed to the presence of hydroxyl groups on the titanium dioxide surface. Also, after soaking the sample in SBF, the needle-like coating on the treated substrate was completely covered with the hydroxyapatite phase which shows a good bioactivity of the coating.  相似文献   

16.
在200℃,0.1mol/L的MgCl2溶液中对纯钛进行了水热处理,以期改善其生物活性。采用多种分析手段对水热处理前后试样的形貌、粗糙度、润湿性能及表面化学成分进行了分析;采用模拟体液浸泡法评价了处理前后试样的体外骨传导性。水热处理在试样表面形成了纳米氧化钛颗粒,但并没有改变试样的微米尺度的形貌,经过水热处理的试样表现出了超亲水性。水热处理成功地将Mg元素复合至钛表面;在MgCl2溶液中进行水热处理时,Mg元素主要以钛酸镁形式存在,而在pH为9.5的MgCl2的溶液中进行水热处理时,Mg元素主要以Mg(OH)2形式存在。在SBF中浸泡3天后,水热处理试样表面即可观察到典型的羟基磷灰石球状晶簇,而未经处理的试样表面则未能发现沉积,此外,过高的Mg复合量抑制了羟基磷灰石的形核长大。结果表明,水热处理在保持种植体宏观形貌不受影响的前提下可作为种植体生产的最后工序以提高其骨结合性。  相似文献   

17.
A novel coating technique has been developed to modify the surface of metallic substrates. By simultaneously blasting the surface with an abrasive and a dopant, it is possible to impregnate the dopant into the surface. In this study, the surface of a titanium alloy has been impregnated with either hydroxyapatite or a variety of substituted (magnesium, carbonate or fluoro) apatites. EDX and XPS analysis clearly reveal high levels of dopant inclusion in the surface to a depth of less than 10 μm. A combination of XRD and ion elution measurements suggest that highly crystalline precursors are not degraded by the process and dissolution of materials with low crystallinity proceeds at a significantly higher rate than that of the crystalline hydroxyapatite. The biocompatibility of these surfaces has been investigated using an in vitro osteoblast proliferation study and the carbonate doped material was found to induce the highest level of cell proliferation.  相似文献   

18.
In the present study, the corrosion resistance and bioactivity of AZ91HP magnesium alloy were improved by plasma spraying hydroxyapatite (HA) coating. X-ray diffraction measurements indicated that the coating formed amorphous and little β-Ca3 (PO4)2 besides of HA. The corrosion resistance and bioactivity of the coating and magnesium alloy in simulated body fluid were investigated using immersion test. The coating showed lower corrosion rate and better bioactivity than magnesium alloy. The coating significantly improved the hydrophilicity of Mg alloy. The prothrombin time of the coating was 18 s, and the prothrombin time of Mg alloy was 11 s, so the coating had better anticoagulant activity.  相似文献   

19.
采用微弧氧化-碱热处理在纯Ti表面制备了含有羟基磷灰石(HA)的仿生陶瓷膜。利用SEM,XRD和电化学工作站等手段研究了膜层的形貌、物相及其耐蚀性。结果表明:在乙酸钙-磷酸二氢钙电解液体系中微弧氧化(MAO),纯Ti表面形成一层含Ca和P的TiO2多孔陶瓷膜。经水热处理后,膜层表面的孔洞变小、致密性增加,膜层中还出现了鳞状、层片状以及针棒状的HA。在Hank's模拟体液中,MAO膜和微弧氧化-碱热处理(MAOAH)膜均表现出较好的耐蚀性。MAO膜经模拟体液腐蚀后,形成了缺钙型HA(Ca8.86(PO4)6(H2O2)2)和CaTiO3;而模拟体液中的阴离子与MAOAH膜层的氧化物作用使膜层孔洞直径和深度增加。  相似文献   

20.
In order to improve the bioactivity of 316L stainless steel, a titanium layer was prepared on the surface of 316L by laser cladding (LC), followed by plasma electrolytic oxidation (PEO) to form a porous ceramic coating on titanium layer. The morphologies, microstructure and compositions of the coated samples were characterized by 3D surface profiler, SEM, EDS, XRD and XPS. The corrosion resistance and bioactivity of the coatings were evaluated by potentiodynamic polarization and immersion test in simulated body fluid (SBF), respectively. The results showed that the porous ceramic coating mainly consisted of anatase and rutile, and highly crystalline HA was also detected. The main elements of the PEO coating are Ca, P, Ti and O. The LC+PEO composite bio-coating has more excellent corrosion resistance than the 316L substrate in simulated body fluid. Furthermore, the composite coating could effectively improve the bioactivity of 316L stainless steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号