首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的为了提高纳米二氧化硅与树脂的相容性,采用"点击"化学法研究表面接枝聚合物。方法利用普通自由基聚合制备的聚(甲基丙烯酸甲酯-马来酸酐)和聚(甲基丙烯酸甲酯-甲基丙烯酸缩水甘油酯),分别与丙炔醇和叠氮钠反应从而在分子链上引入多个炔基和叠氮基,然后与叠氮基改性的纳米二氧化硅粒子进行"点击"化学反应实现纳米二氧化硅包覆改性,并通过热重分析、红外光谱分析以及扫描电镜进行结构表征。结果聚合物接枝到了纳米二氧化硅表面,包覆第一层聚合物后,二氧化硅分散性明显提高;包覆第二层聚合物后,分散性有所下降。结论通过在纳米二氧化硅表面包覆聚合物,可以明显提高其分散性能。  相似文献   

2.
为了提高纳米SiO2粒子与环氧树脂基体的界面作用力,促进其在基体中的分散,选择苯乙烯和马来酸酐作为单体对纳米SiO2粒子进行化学接枝改性。用红外光谱和核磁共振法对接枝的纳米粒子进行表征,用透射电镜和动态光散射对粒子分散性进行研究,结果表明,接枝链通过化学键接在纳米粒子表面,使得粒子分散性能得到提高。对影响接枝效果的引发剂浓度、单体浓度、反应时间、引发剂引发时间等因素进行了优化,得到了纳米粒子接枝的最佳反应条件。  相似文献   

3.
纳米ZrO2颗粒经过偶联后,通过表面接枝法,制备了表面接枝聚合物ZrO2-PMMA。沉降分析、红外光谱和光电子能谱的结果证明了聚合物确实是纳米ZrO2颗粒被PMMA所包覆,纳米ZrO2颗粒表面有机化后分散性能大大增加。  相似文献   

4.
有机小分子原位接枝纳米炭黑的制备及其应用   总被引:1,自引:0,他引:1  
提出了采用有机小分子原位接枝到炭黑表面的新设想,可实现炭黑的良好分散和结构可控.采用机械共混的方法同时实现了炭黑微结构的破坏与炭黑表面有机小分子的接枝反应;利用该方法接枝的炭黑粒子呈单分散分布,粒径在50 nm左右.这种纳米炭黑(GCB)能稳定地分散在有机溶剂中,也可均匀地分散到聚合物基体内.纳米炭黑分散的聚碳酸酯(PC)复合材料显示了一定的透明性,有望制成透明导电复合材料.  相似文献   

5.
纳米二氧化钛表面改性及其在聚氨酯涂层中的分散性质   总被引:2,自引:1,他引:1  
郑高  杜楠  梁红波 《表面技术》2007,36(4):42-44,48
采用长链烷烃和微胶囊方法对纳米TiO2(锐钛型,粒径20nm) 进行表面改性,利用傅里叶红外光谱(FTIR)和热重分析(TGA)分别研究了改性纳米粉体的表面化学结构及接枝率,结果表明:改性纳米TiO2粉体表面成功接枝了高分子聚合物,接枝率分别为5%和12%.将改性纳米TiO2粉体(质量分数为1%~3%)与双组分聚氨酯涂料进行复合,制备了纳米TiO2/聚氨酯复合涂料,并利用扫描电子显微镜(SEM)对纳米复合涂层进行了微观检测,结果表明:微胶囊改性的纳米TiO2在涂层中的分散性最好.  相似文献   

6.
目的 分别使用酰氯法和氨基开环法接枝修饰氧化石墨烯(GO),利用接枝分子的"锚定效应"提高纳米银颗粒在GO表面的分散效果.方法 先对GO-Cl-DA(GO经酰氯化后接枝对苯二胺)和GO-DA(采用"一锅法"对GO和对苯二胺直接混合接枝)进行比较,之后又比较了先接枝后沉积纳米粒子(两步法)和接枝/沉积同时进行(一步法)得到的杂化材料.采用红外光谱、X射线衍射谱、X射线光电子能谱和热失重曲线等,分析了材料的组成、热稳定性、接枝方式、银纳米颗粒的负载效果等.结果 在氨基与环氧基开环反应或酰胺键的作用下,对苯二胺分子能有效地接枝在GO表面,其中,"一锅法"(即氨基开环法)的接枝效率较高,操作简便.在沉积银的过程中,两步法对基底还原程度更彻底,纳米银的负载量从一步法的1.01%(原子数分数)提高到了7.22%,且分散性更好,并由此提出了接枝小分子对纳米颗粒的锚定效应.结论 含有氨基的分子对氧化石墨烯进行修饰时,采用氨基开环法既简单,又高效,接枝分子通过锚定效应改善原位沉积的无机纳米粒子,可获得负载效果优异的杂化材料.  相似文献   

7.
通过电偶置换反应制备了尺寸在30~35 nm的结晶性良好的Au纳米颗粒,并成功在其表面包覆了不同厚度的Si O2壳层,利用TEM、HRTEM和UV-Vis对样品的结构和形貌进行了表征,并以罗丹明6G(R6G)为探针分子,对Au@SiO_2复合粒子的表面增强拉曼散射(SERS)效应进行了研究。结果显示,相对于Au纳米颗粒,Au@SiO_2复合粒子显著提高了拉曼信号的质量和检测的灵敏度,且Si O2壳层厚度对其SRES效应影响显著,壳层厚度为2 nm的复合粒子对R6G分子的检测极限可达10~(-7)mol/L。  相似文献   

8.
钛酸酯偶联剂NDZ-401对纳米碳酸钙表面性能的影响   总被引:2,自引:0,他引:2  
利用红外光谱仪(IR)、释放气体分析仪(EGC)、表面分析仪和气相色谱仪等表征和研究了钛酸酯偶联剂NDZ-401对纳米碳酸钙表面物理化学性能的影响.结果表明,钛酸酯偶联剂NDZ-401中的-Ti-(O=PH-(OC8H17)2)2基团以化学键结合在纳米碳酸钙粒子表面.经1.5%(质量分数)左右NDZ-401处理的纳米碳酸钙具有良好的可分散性和较强的表面吸附能力.  相似文献   

9.
纳米粒子在聚合物中均匀、稳定分散,是纳米复合材料具有优良性能的前提。文中通过选择表面活性剂改性纳米SiO2,提高纳米粒子在环氧树脂中的分散性,制备出不同含量的n–SiO2/环氧树脂聚合物复合材料,探讨了纳米SiO2对复合材料强度的影响规律。研究结果表明:改性后的纳米SiO2粒子在聚合物体系中呈单分散状态,均匀分布的纳米粒子与基体结合紧密,其在基体中起到了物理交联点的作用,对剪切力的抵抗能力增强,提高了复合材料的综合性能。加入6%质量分数的纳米粒子,复合材料的拉伸剪切强度可提高35.1%。  相似文献   

10.
以溶胶-凝胶法、静电纺丝法以及高温烧结相结合的方法,将金属离子Mg、Zn掺杂到生物活性玻璃中制备了掺杂Mg、Zn的Bioglass@CNFs,以聚甲基丙烯酸甲酯(PMMA)为致孔剂制备了多孔化Bioglass@CNFs。扫描电子显微镜(SEM)、X射线衍射(XRD)等表征手段研究表明,不同的处理阶段碳纳米纤维的形貌发生变化,在热牵伸和化学反应的共同影响下,碳纳米纤维的直径会逐渐变小,但其取向度会有所改善;在高温烧结即碳化后,碳纳米纤维的表面生长出生物活性玻璃纳米粒子;Mg、Zn掺杂Bioglass@CNFs的表面都有生物活性玻璃纳米粒子生长,且Mg掺杂Bioglass@CNFs表面粒子组成以硅灰石(CaSiO3)和透辉石(MgCaSi2O6)为主,呈方形、数量多、大小均一,Zn掺杂Bioglass@CNFs表面粒子为无定形态,数量少、大小均一,这与Mg、Zn参与碳纳米纤维不同热处理阶段中发生的环化、脱氢和氧化等一系列化学反应的机制有关。此外,PMMA具有显著的制孔作用,高温烧结后Bioglass@CNFs内部出现中空管道结构,表面也出现大量微孔,大大提高了纤维的比表面积和粗糙度,且表面生长出的生物活性玻璃纳米粒子组成以硅灰石(β-CaSiO3)和假硅灰石Ca3(Si3O9)为主。  相似文献   

11.
采用含MPEG侧链的大单体与丙稀酸等小单体共聚的技术,通过自由基引发溶液聚合,合成了一系列水溶性栽梳状聚合物--超塑化剂聚羧酸接枝聚乙二醇单甲醚(PCA).制各过程分两步进行,首先合成大单体聚乙二醇单甲醚丙烯酸酯,然后将大单体与丙烯酸等单体共聚,合成了梳状聚合物.通过控制反应条件,获得了一系列结构组成不同的接枝共聚物.用傅立叶变换红外光谱(FT-IR)表征了共聚物的结构,并对共聚物水泥分散稳定性进行了研究,初步分析了该类超塑化剂的链段结构对水泥分散性能的影响.研究结果表明侧链含MPEG的聚丙烯酸类梳状物对水泥具有很好的分散性.  相似文献   

12.
在AOT/正庚烷/氯金酸反相微乳液中,用水合肼作为还原剂制备了纳米金粒子, 用紫外-可见光谱和透射电镜进行分析,系统地研究了水和表面活性剂摩尔比 (ω=nH2O/nAOT)以及氯金酸浓度对粒径的影响。结果表明, 制备的纳米金粒子粒径在4~12 nm、单分散性好。纳米金粒径与ω值存在线性关系。氯金酸的浓度对粒径的影响比较复杂, 随着浓度增大, 粒径先减小后增大。用FT-IR红外光谱解释了AOT的磺酸基对纳米金粒子表面有强烈的吸附作用,从而对合成的纳米金粒子有着很强的保护作用  相似文献   

13.
目的制备一种新型绿色环保的耐海洋微生物附着涂层。方法通过聚硅氧烷(有机硅)改性丙烯酸树脂,合成以硅氧烷为侧链,丙烯酸树脂为主链的有机硅改性丙烯酸树脂。利用聚多巴胺的粘附性和还原性,制备二氧化硅/聚多巴胺/纳米银(Si O2/PD/Ag)纳米复合材料。以制备的有机硅改性丙烯酸树脂为成膜物,以载银纳米颗粒为杀菌剂,制备耐微生物附着环保涂层。通过傅里叶红外光谱仪(FTIR)和接触角检测仪(CA)分别对有机硅改性丙烯酸树脂的Si—O基团和接触角作表征,通过透射电子显微镜(TEM)表征Si O2/PD/Ag的制备过程,通过水解率和细菌附着等实验评价涂层的防污性能。结果Si—O—Si和Si—O—C的接入使得丙烯酸树脂改性后的接触角从72°提高到96°。Si O2/PD/Ag是一种特殊"核-壳-卫星"结构的载银纳米颗粒,纳米银均匀分散在Si O2的表面。涂层的水解性能良好,水解率为1.03μm/d,杀菌剂分散均匀。结论该涂层通过自抛光和低表面能双重物理抑菌作用和纳米银的杀菌作用,能有效抑制海洋微生物在试样表面的附着。  相似文献   

14.
石墨烯在金属防护中的应用与展望   总被引:2,自引:2,他引:0  
石墨烯(类)材料作为明星材料,是诸多应用领域的研究热点。主要从两个方面综述了石墨烯材料在金属腐蚀防护中的应用研究现状,简要概述了单纯的石墨烯薄膜用于金属防护的发展历程,并对该防护手段的弊端进行了分析与讨论,得出石墨烯薄膜不适合直接覆于金属表面用于防腐蚀的结论。详细介绍了石墨烯复合防护涂层的制备方法与性能,针对将石墨烯类材料作为填料改性防护涂层的研究现状,概括了该防护手段的缺点与改进策略,即通过在氧化石墨烯表面进行分子(硅烷偶联剂、聚合物单体等)修饰和表面覆盖纳米粒子(纳米Si O2、Al2O3、Ti O2颗粒等),达到增强石墨烯材料与防护涂层之间的相容性的目的。在此基础上,提出了"主动防护"的概念,构想出一种以石墨烯材料为基础的新型缓蚀剂纳米存储器,同时提出石墨烯材料的深层防护机制仍亟待解决。最后,立足于整个石墨烯行业,从工业化应用的角度出发,对石墨烯防护技术进行了展望。  相似文献   

15.
CO2固化纳米SiO2/甲阶碱性酚醛树脂的研究   总被引:1,自引:0,他引:1  
考察用聚乙二醇修饰的纳米SiO2在树脂溶液中分散性;利用透射电镜、红外光谱研究了聚乙二醇(PEG)修饰的纳米SiO2表面性能及分散性的改进效果;并通过砂芯抗压强度来研究纳米SiO2的用量对CO2固化酚醛树脂粘结剂抗压强度的影响,结果表明:4%聚乙二醇修饰的纳米SiO2粒子在树脂溶液中分散性较好;纳米SiO2粒子表面羟基减少;添加量在0.3%时,粘结剂的抗压强度可以提高30%.  相似文献   

16.
硅烷偶联剂链长对纳米 TiO2表面改性的影响   总被引:1,自引:0,他引:1  
采用具有不同链长的硅烷偶联剂KH570和KH171分别对纳米TiO2粒子进行了表面改性。采用红外光谱(FT-IR)、热重分析(TG)、透射电镜(TEM)和润湿性实验等测试。结果表明:硅烷偶联剂有机链长的空间位阻效应对纳米粒子改性起关键作用。TEM表明经长链的KH570改性纳米TiO2分散效果更佳;热重分析和润湿性实验表明当长链KH570用量为10%时,纳米粒子表面接枝率和水接触角均达到最大,分别为8.05%和76.6°;红外光谱表明长链的KH570键合强度较KH171大。  相似文献   

17.
选择8个碳链长度的烷基双硫醇分子在电极表面自组装构筑Au-SHSAM模板,然后将由弱保护剂四辛基溴化铵(TOAB)稳定的小尺寸Au、Ag、Pd和Pt纳米粒子通过纳米粒子与电极上巯基之间的强相互作用(M-S)将其表面的弱保护剂TOAB替换的方式,成功实现了贵金属纳米粒子在巯基模板电极表面的自组装,利用循环伏安法(CV)和扫描隧道显微镜(STM)对纳米粒子修饰电极在H2SO4溶液中的电化学行为以及纳米粒子在电极表面的形貌进行了表征,发现可以通过调节浸泡时间控制纳米粒子在电极表面的覆盖度。该方法新颖、简单而且具有一定的普适性。  相似文献   

18.
以生物相容性较好的巯基羧酸分子为保护剂、NaBH4为还原剂,采用有机两相法制备金属纳米粒子,实现了对纳米粒子的表面功能化。该方法制备的纳米材料粒径小(5 nm),单分散性好。讨论了巯基羧酸与金属前驱体之间的投料比、还原剂NaBH4的量以及巯基羧酸分子链长等因素对纳米粒子形貌的影响。除Au外,该方法还适用巯基羧酸对Ag、Pt和Pd等多种纳米粒子的表面修饰。  相似文献   

19.
研究了在砂纸打磨、硅烷偶联剂处理铝板表面两种条件下,马来酸酐接枝聚丙烯(MPP)含量对铝薄板/聚丙烯界面粘接剪切强度的影响.聚丙烯中不含MPP时,粘接剪切强度分别为3.44和4.57 MPa;添加MPP后,MPP的酸酐基团及其水解形成的羧基与铝板表面羟基、Al3 发生界面化学反应,粘接强度得以大幅提高.MPP含量为20%时,粘接强度分别达到最大值10.30和10.64 MPa.MPP含量继续增大时,在铝板表面形成较低分子量MPP的聚集区,且该区与MPP贫乏区之间的分子链缠结作用弱,导致铝板/聚丙烯的界面粘接强度随MPP含量增加而下降.  相似文献   

20.
纳米TiO2/白氟聚氨酯复合涂层的制备及抗老化性能研究   总被引:2,自引:0,他引:2  
为了改善纳米TiO2的分散性以及增强聚氨酯涂层的抗老化性能,在硅烷偶联剂改性纳米TiO2的基础上,接枝上甲基丙烯酸甲酯与丙烯酸丁酯的共聚物,制得微胶囊纳米TiO2粉体,并借助于FT-IR、SEM表征复合粒子结构和形貌.用改性后的金红石型纳米TiO2制备TiO2/白氟聚氨酯复合涂层,利用人工加速老化的方法,在老化前后不同阶段测试纳米复合涂层的基本性能.试验结果表明:TiO2的添加能提高复合涂层的抗老化性能,且当TiO2添加量为3%时,其基本性能最佳,抗老化性能最好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号