首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
采用Zn-6Sn-5Bi钎料对镀Cu/Ni的烧结NdFeB永磁体和DP1180钢进行钎焊连接,对比分析了2种镀层条件下钎焊接头的微观组织和力学性能。结果表明,对于镀Cu的烧结NdFeB永磁体和DP1180钢的钎焊接头,Cu在钎料中扩散并与Zn、Fe反应生成脆性金属间化合物,导致钎缝中出现裂纹和孔洞。与无镀层时的烧结NdFeB永磁体和DP1180钢的钎焊接头相比,接头的剪切强度由61.9 MPa降低至52.3 MPa;对于镀Ni的烧结NdFeB永磁体和DP1180钢的钎焊接头,Ni集中分布在NdFeB一侧的界面处,并且由于Sn和Bi的扩散形成了不同的扩散层,其剪切强度提高至78.1 MPa。  相似文献   

2.
《硬质合金》2015,(5):294-299
以铜基合金为钎料,通过真空钎焊方法获得Ti(C,N)基金属陶瓷与45钢牢固接头。采用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)等研究了主要钎焊工艺参数对钎焊接头剪切强度、显微组织和界面处各元素分布的影响规律。结果表明:随着钎焊温度和保温时间的增加,接头的剪切强度先增加后减小。当钎焊温度和保温时间分别为1 060℃和10 min时,钎料与母材中的元素在界面处发生较剧烈扩散,并形成适当厚度的扩散层,界面产物从45钢一侧到Ti(C,N)基金属陶瓷一侧依次为(Fe,Ni)固溶体、Cu Mn Zn金属间化合物、(Cu,Ni)固溶体和Ti(C,N),此时,接头达到最高剪切强度195.3 MPa。  相似文献   

3.
Ti(C,N)基金属陶瓷与45号钢火焰钎焊试验研究   总被引:5,自引:0,他引:5  
在火焰钎焊条件下 ,采用铜基、银基钎料对 Ti(C,N)基金属陶瓷与 4 5号钢进行钎焊试验。通过观察和分析钎焊接头的结合情况及剪切试验 ,表明 Ti(C,N)基金属陶瓷具有较好的钎焊性 ;火焰钎焊条件下 ,以 H 6 2为钎料的接头的平均剪切强度为37MPa,以 BAg10 Cu Zn为钎料的接头的剪切强度达 114 MPa,以 BCu Zn Mn为钎料的接头的平均剪切强度为 4 9MPa  相似文献   

4.
研究了Ti3Al基合金真空钎焊及接头组织性能;分析了不同钎料对接头界面组织和剪切强度的影响,初步优选了钎料,优化了钎焊连接规范参数;利用电子探针、扫描电镜和X射线衍射等方法对接头进行了定性和定量分析.结果表明:采用NiCrSiB钎料连接时,在界面处有金属间化合物TiAl3、AlNi2Ti和Ni基固溶体生成,TiAl3和AlNi2Ti的生成降低了接头的剪切强度;采用TiZrNiCu钎料连接时,在界面处有金属间化合物Ti2Ni、Ti(Cu,Al)2和Ti基固溶体生成,Ti2Ni和Ti(Cu,Al)2的形成降低了接头的剪切强度;采用AgCuZn钎料连接时,在界面处生成TiCu、Ti(Cu,Al)2和Ag基固溶体,TiCu和Ti(Cu,Al)2的生成是降低接头剪切强度的主要原因;采用CuP钎料连接时,在界面处生成了Cu3P、TiCu和Cu基固溶体,CuaP和TiCu使接头的剪切强度降低;对于NiCrSiB钎料,当连接温度为1 373 K,连接时间为5 min时,接头的剪切强度最高为219.6 MPa对于TiZr-NiCu钎料,当连接温度为1 323 K,连接时间为5 min时,接头的最高剪切强度为259.6 MPa;对于AgCuZn钎料,当连接温度为1 173 K,连接时间为5 min时,接头的最高剪切强度为125.4 MPa;对于CuP钎料,当连接温度为1 223 K,连接时间为5 min时,接头的最高剪切强度为98.6 MPa;采用TiZrNiCu钎料连接Ti3Al可获得最大接头强度.  相似文献   

5.
采用不同质量分数的Ni元素的钎料对YG15硬质合金与35Cr Mo钢进行了钎焊,分别研究了Ni元素含量、钎焊温度以及超声作用等因素对钎焊接头微观组织与力学性能的影响。研究表明:钎焊温度为800℃时,随钎料中Ni元素的增加,界面处可获得连续的α-Cu固溶体层;当钎料中Ni元素质量分数为4.7%时,其接头剪切强度最高,为295 MPa;钎焊温度影响Ni元素的扩散行为,从而影响界面处贫Co区的宽度,在温度为730℃时,贫Co区宽度最小,接头剪切强度值最高,为350 MPa;施加超声可以增加贫Co区宽度,降低共晶组织含量,并使WC颗粒迁移进入钎缝金属。当超声时间为30 s时,贫Co区宽度为17.5μm,接头剪切强度为371 MPa,比无超声时接头强度提高6%。  相似文献   

6.
采用Al-7Si-20Cu钎料在真空钎焊条件下(不添加钎剂)对1060铝合金与Q235钢(镀Ni与不镀Ni)进行钎焊试验,研究了钎焊接头的显微组织及力学性能。研究结果表明,570℃钎焊5 min时,Fe表面不镀Ni时,Fe侧界面处生成厚度较大的Fe_2A_(l5)和FeAl_3脆性化合物,接头抗剪切强度仅为40 MPa。当Fe表面镀Ni后,Ni层的存在抑制了脆性Fe-Al化合物的形成,Fe侧界面生成Ni_2Al_3和NiAl_3化合物层,接头的剪切强度显著提高。延长钎焊时间,Ni_2Al_3层变薄,Ni Al3层增厚,接头剪切强度提高。当钎焊时间继续增加,Ni层消失,再次生成Fe-Al化合物,接头剪切强度降低。  相似文献   

7.
分别采用Zn-15Al,Zn-22Al,Zn-28Al,Zn-37Al和Zn-45Al钎料钎焊获得Cu/Al接头.利用SEM,EDS和XRD研究了Zn-Al钎料成分对Cu/Al接头中Cu母材/钎缝界面结构的影响,并系统阐述了Zn-Al钎料成分-接头界面结构-接头抗剪切强度之间的关系.研究发现,Cu/Zn-15Al/Al接头中Cu母材/钎缝界面结构为Cu/Al4.2Cu3.2Zn0.7,且Al4.2Cu3.2Zn0.7界面层较薄,其厚度为2~3μm,接头具有较高的抗剪切强度,达66.3 MPa.随着钎料中Al含量的提高,在Cu/Zn-22Al/Al接头界面处Al4.2Cu3.2Zn0.7界面层的厚度逐渐增大,甚至在Cu/Zn-28Al/Al接头的Al4.2Cu3.2Zn0.7界面层附近出现少量的Cu Al2,接头的抗剪切强度逐渐降低.当采用Al含量较高的Zn-37Al钎料钎焊Cu/Al接头时,Cu母材/钎缝界面结构转变为Cu/Al4.2Cu3.2Zn0.7/Cu Al2;脆性Cu Al2层的出现,使接头抗剪切强度大幅下降,为34.5 MPa.当采用Al含量最高的Zn-45Al钎料钎焊Cu/Al接头时,Cu母材/钎缝界面结构转变为Cu/Cu Al2,接头抗剪切强度最低,为31.6 MPa.  相似文献   

8.
选用CuMnNi钎料对刀具的刀头YG8硬质合金和刀体45钢进行真空钎,通过剪切强度试验、扫描电镜和能谱仪等方法分析了钎焊温度、钎焊间隙和Cu缓冲层对钎焊接头性能和组织的影响。结果表明:钎焊温度在1000℃、钎焊间隙在0.18 mm时,钎焊接头的组织和强度较好,接头剪切强度达280 MPa;添加0.1 mm Cu缓冲层后,缓冲层与钎料和母材结合界面良好,接头剪切强度最高。  相似文献   

9.
采用Ti-37.5Zr-15Cu-10Ni和 Ag-Cu28两种钎料分别对TC4钛合金/30CrMnSiNi2超高强钢异种材料进行了钎焊,对钎焊界面组织以及接头的力学性能进行了分析。结果表明:Ag基钎料钎焊TC4与30CrMnSiNi2A异种材料时,钎缝界面组织为Ag(s,s)+Ti-Cu系化合物组成;因Ag固溶体的存在,钎缝具有一定的韧性,接头剪切强度较高,剪切断口呈现出韧性断裂特征。Ti基钎料钎焊TC4与30CrMnSiNi2A异种材料时,钎缝界面组织为Ti-Zr固溶体+未完全反应凝固钎料,钎缝显微硬度较高,接头剪切强度较低,呈现出脆性断裂特征。Ag基钎料TC4/30CrMnSiNi2A异种材料钎焊接头力学性能明显优于Ti基钎料结果,在钎焊温度830℃,保温时间15min时,剪切强度为125.52MPa。  相似文献   

10.
本文采用不同含量的Ni元素的钎料对YG15硬质合金与35CrMo钢进行了钎焊,分别研究了Ni元素含量,钎焊温度以及有无超声作用等因素对接头力学性能与微观组织的影响,研究表明钎焊温度为800°C时随钎料中含Ni元素的增加,界面处可获得连续的α-Cu固溶体层,当钎料中Ni元素含量为4.7%时,其接头剪切强度最高,为295MPa。发现钎焊温度将影响Ni元素的扩散行为,从而影响界面处贫Co区的宽度,在温度为730℃时贫Co区宽度最小,其接头剪切强度值也最高,为350MPa。施加超声可以使增加贫Co区宽度,降低共晶组织含量,并使得WC颗粒迁移进入钎缝金属。当超声时间为30s时,贫Co区宽度为17.5μm,接头剪切强度为378MPa,比无超声时接头强度提高6%。  相似文献   

11.
肖勇  程钊  周建军  张建  罗丹  李明雨 《焊接学报》2022,43(12):27-34
在波导器件中,铝合金壳体较差的润湿性制约了其与微带电路板之间大面积、可靠低温钎焊连接. 通过电弧喷涂技术在5A06铝合金表面制备了厚度约为80 μm的Ag-15%Ni(质量分数)单一涂层和Ni-5%Al/Ag-15%Ni(质量分数)复合涂层,以提升Sn-Pb钎料在其表面的润湿性. 对比研究了两种涂层的显微结构、涂层界面结合性能、低温钎焊行为及钎焊接头剪切失效机制. 结果表明,涂层与铝合金基板间形成了良好的界面结合,并且两种涂层均具有较好的低温焊接性. 其中,Ag-15%Ni单一涂层与铝合金基板的结合强度为40 MPa,喷涂后铝合金基板与T2紫铜形成的钎焊接头抗剪强度为26 MPa. 相较而言,Ni-5%Al /Ag-15%Ni复合涂层展现出更佳的涂层结合强度(42 MPa)和钎焊接头抗剪强度(31 MPa).  相似文献   

12.
采用SEM、EDS、XRD等方法研究了超声、电场外能辅助下Sn2.5Ag0.7Cu0.1RE0.05Ni/Cu钎焊接头的组织与性能。结果表明,借助于超声、超声-电场外能辅助能细化Sn2.5Ag0.7Cu0.1RE0.05Ni/Cu钎焊接头钎缝组织并使共晶组织比例增加,界面区金属间化合物(IMC)平均厚度、粗糙度和界面IMC颗粒尺寸减小。超声和电场外能辅助下Sn2.5Ag0.7Cu0.1RE0.05Ni/Cu钎焊接头强度与其界面IMC层粗糙度密切相关,超声的作用更为显著,在超声-电场外能辅助钎焊接头界面IMC层粗糙度降低中占主导作用,施加超声-电场外能辅助下钎焊接头剪切强度与传统钎焊相比提高24.1%;施加超声、超声-电场外能辅助使Sn2.5Ag0.7Cu0.1RE0.05Ni/Cu钎焊接头断裂途径由钎缝和界面IMC层组成的界面过渡区向钎缝侧迁移,呈界面(Cu,Ni)_6Sn_5 IMC解理和钎缝解理+韧窝的脆-韧混合型断裂机制,使接头剪切断口塑性区比例增加,从而提高接头剪切强度。  相似文献   

13.
Anodically bonded glass/titanium and glass/steel were investigated for applications in a variety of industrial sectors. Residual stresses that build up during the bonding or cooling down of a joint to room temperature represent the main challenge to the joining process since they drastically weaken the mechanical strength of the joint. A layer of liquid tin-based solder in between the glass and metal part of the joint is used to reduce the internal stresses and improve the contact between the surfaces. The microstructural characterization of glass/solder/titanium and glass/solder/steel joints formed from Ni coated metal substrates indicated that Ni3Sn4 was formed for both types of joint but with a different morphology and location depending on the type of metal substrate. The average shear strength of the joints was 24 MPa for glass–titanium and 21 MPa for glass–steel joints. For both types of joint, the fracture crack propagated along the glass–solder interface.  相似文献   

14.
结合电磁成形技术和半固态钎焊技术,提出了一种钢/铝管磁脉冲辅助半固态钎焊工艺,利用电磁脉冲产生的洛伦兹力使铝外管高速碰撞半固态钎料,通过半固态钎料中固相颗粒对母材表面径向压缩和轴向剪切作用去除母材表面氧化膜,实现钢铝异种管材的无钎剂钎焊. 在不同工艺参数下进行了钢/铝管磁脉冲半固态钎焊试验,研究了钎焊接头界面元素的扩散行为和金属间化合物的生长机理. 结果表明,焊缝组织主要为α-Al以及富锌相,铝侧界面处的Al2O3氧化膜破碎与去除情况良好,钢侧界面处有薄层FeAl3金属间化合物形成,各部位均获得较好的冶金结合.  相似文献   

15.
A novel ultrasonic-assisted low-temperature soldering was developed to join AZ31B Mg alloy and 6061 Al alloy with a series of Sn–x Zn solders. The average maximum shear strength of the joints reaches up to 87.5 MPa at soldering temperature of 300 °C under ultrasonic assistance for only 5 s using Sn–20 Zn solder. The fracture path propagates completely in the soldering seam. The results indicate that the microjet generated by ultrasonic pressure in liquid solder could strike and splinter the Mg_2Sn intermetallic compounds into small pieces, which contributes to the enhancement of the joint strength. In addition, the primary Al(Zn) solid solution phase formed during cooling stage could also strengthen the joint due to the prevention of microcracks propagation.  相似文献   

16.
针对Cu-Sn-Cu三明治结构,进行0.06 MPa恒压钎焊. 基于Cu-Sn二元相图,选定了不同的钎焊温度与钎焊时间. 钎焊完成后,根据不同相组成可将接头分为残余锡,Cu3Sn-Cu6Sn5-Cu3Sn,Cu-Cu3Sn-Cu三类. 为研究三种不同相组成接头抗剪强度之间的关系,进行1 mm/min加载速率的剪切试验,并对断口进行形貌分析. 结果表明,随着Sn与Cu6Sn5相继耗尽,接头抗剪强度不断升高. 残余锡接头,Cu3Sn-Cu6Sn5-Cu3Sn接头,Cu-Cu3Sn-Cu接头抗剪强度分别为23.26,33.59,51.83 MPa. 分析断口形貌发现,在残余Sn接头断口中,可以分辨出Sn,Cu6Sn5,Cu3Sn形貌,说明其断裂路径穿过了Cu6Sn5与Cu3Sn两相. 在Cu3Sn-Cu6Sn5-Cu3Sn接头断口中,可分辨出Cu6Sn5,Cu3Sn形貌,其断裂路径穿过了Cu3Sn相. 全Cu3Sn相接头断口中仅可分辨出Cu3Sn相断裂形貌.  相似文献   

17.
SiC是核聚变反应堆流道插件及结构材料的优秀候选材料。为了获得大尺寸的SiC部件,通过钎焊方法连接SiC,选择50Al-50Si合金作为钎料,研究50Al-50Si合金钎料的显微组织、力学性能及在真空1100℃×10min条件下对SiC陶瓷的钎焊性能。并在此钎料基体上加入不同含量(2%,6%,10%,14%)的Ti,研究Ti的加入对钎料显微组织性能及SiC陶瓷接头力学性能的影响。结果表明,Al-Si-Ti钎料能完成SiC陶瓷的连接而获得性能优异的接头。在Ti含量增加到6%时,接头剪切强度升高至138.98MPa,随着Ti含量增多,接头剪切强度又下降。  相似文献   

18.
赵智力  刘鑫  李睿  王鹏 《焊接学报》2018,39(9):95-98
研究了纳米颗粒添加对低银SAC0307锡膏焊点显微组织和力学性能的影响.结果表明,添加纳米铜颗粒的焊点钎料共晶区中岛状Cu6Sn5相尺寸大、且难于弥散分布,添加量超过0.3%时,Cu6Sn5相极易在液/气界面聚集、合并和长大,导致钎料流动性变差、锡膏中助焊剂气体难于逸出而形成气孔.而添加0.1~5.0%纳米银颗粒的焊点均无气孔产生,其焊点钎料中的Ag3Sn相尺寸小易于弥散分布,且β-Sn初晶相细化明显.随纳米银添加量的增加,焊点抗剪强度先增加后降低,0.5%添加量时抗剪强度最大、较相同条件下的SAC0307焊点提高了30.8%.  相似文献   

19.
采用铜箔/90W-5Ni-5Co(质量分数,%)混合粉末/镍箔复合中间层,在加压5 MPa、连接温度1120℃、保温60 min的工艺条件下,对纯钨(W)和0Cr13Al钢进行了连接。利用SEM、EDS、电子万能试验机及水淬热震实验等手段研究了接头的微观组织、成分分布、断口特征、力学性能及抗热震性能。结果表明,连接接头由钨母材、Cu-Ni-Co合金层、钨基高密度合金层、镍层、钢母材5部分组成。接头中的钨基高密度合金层由90W-5Ni-5Co混合粉末固相烧结生成,其Ni-Co粘结相和钨颗粒相冶金结合且分布均匀。钨基高密度合金层与钨母材以瞬间液相扩散连接机制实现了良好结合。接头剪切强度达到286 MPa,断裂均发生在钨基高密度合金层/镍层结合区域,断口形貌呈现为韧性断裂。经过60次700℃至室温的水淬热震测试,接头无裂纹出现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号