首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
纳米石墨改性ZM5镁合金微弧氧化陶瓷层摩擦磨损性能   总被引:3,自引:0,他引:3  
添加纳米石墨颗粒的硅酸盐溶液中制备ZM5合金微弧氧化陶瓷层,利用SEM、EDS和XRD分析了涂层的微观形貌、成分及物相组成,用球-盘干磨损试验对涂层的室温摩擦磨损行为进行研究。结果表明,纳米石墨改性微弧氧化陶瓷层主要由Mg2SiO4、少量的MgO、Mg和C相组成,石墨以机械形式分散于陶瓷层中并起到减摩作用。4.9N载荷下体积磨损率为9.19×10-5 mm3/Nm,是无石墨微弧氧化陶瓷层的1/3,ZM5基体的1/14;9.8N载荷下体积磨损率为1.44×10-4 mm3/Nm,是无石墨微弧氧化陶瓷层的2/5,ZM5基体的1/8,与无石墨微弧氧化陶瓷层相比显著提高了镁合金基体的耐磨性,且其室温干摩擦磨损机理为疲劳磨损,磨痕呈疲劳剥落形貌。  相似文献   

2.
铝合金表面微弧氧化陶瓷层耐磨性   总被引:1,自引:1,他引:0  
利用微弧氧化技术在7075铝合金表面形成微弧氧化陶瓷膜层,通过SEM、XRD手段分析了微弧氧化陶瓷层的显微结构、表面形貌和相组成,并在HIT-Ⅱ摩擦磨损试验机上测试了陶瓷膜层的摩擦学性能.结果表明:7075铝合金表面的微弧氧化陶瓷膜层由疏松层、致密层构成,其相组成主要是α-Al2O3和γ-Al2O3两相;氧化陶瓷层与基体结合良好,厚度为25~45μm,表面硬度可达到1900HV0.1左右;微弧氧化表面处理技术可以显著提高铝合金的表面耐磨性,在与GCr15钢球对磨时,膜层具有较低的磨损率,但摩擦因数相对较高.  相似文献   

3.
采用微弧氧化技术,在电解质溶液中添加蛇纹石微纳米颗粒,在ZL109铝合金表面原位生长陶瓷层。对未添加和添加蛇纹石微纳米颗粒制得的微弧氧化陶瓷膜层进行扫描电镜(SEM)、能谱(EDS)及X射线衍射(XRD)分析,并与铸铁试样进行摩擦磨损试验,探究蛇纹石微纳米颗粒对铝合金微弧氧化陶瓷膜层成分及摩擦学性能的影响。结果表明:在电解液中添加蛇纹石微纳米颗粒改变了微弧氧化陶瓷膜层的元素组成和相成分,在摩擦磨损试验中,微弧氧化膜层中的蛇纹石在摩擦能的作用下诱发了铸铁销表面的内氧化反应,在摩擦接触微区形成了Mg Si O3、Fe2O3及Fe3O4复合陶瓷表面自修复层,提高了铸铁销表面显微硬度,降低了摩擦磨损过程中的摩擦系数和铸铁销的磨损率。  相似文献   

4.
采用微弧氧化技术,在电解质溶液中添加蛇纹石微纳米颗粒,在ZL109铝合金表面原位生长陶瓷层。对未添加和添加蛇纹石微纳米颗粒制得的微弧氧化陶瓷膜层进行扫描电镜(SEM)、能谱(EDS)及X射线衍射(XRD)分析,并与铸铁试样进行摩擦磨损试验,探究蛇纹石微纳米颗粒对铝合金微弧氧化陶瓷膜层成分及摩擦学性能的影响。结果表明:在电解液中添加蛇纹石微纳米颗粒改变了微弧氧化陶瓷膜层的元素组成和相成分,在摩擦磨损试验中,微弧氧化膜层中的蛇纹石在摩擦能的作用下诱发了铸铁销表面的内氧化反应,在摩擦接触微区形成了Mg Si O3、Fe2O3及Fe3O4复合陶瓷表面自修复层,提高了铸铁销表面显微硬度,降低了摩擦磨损过程中的摩擦系数和铸铁销的磨损率。  相似文献   

5.
采用等离子喷涂法在钛合金(TC4)基体上制备纳米陶瓷涂层。研究了烧结型陶瓷、纳米陶瓷和纳米球化陶瓷涂层的微动摩擦磨损性能。结果表明:在微动磨损滑移区、不同载荷水平下,三种涂层均呈现相同的耐磨性规律,耐磨性能由好到差的顺序为纳米球化陶瓷纳米陶瓷烧结型陶瓷。  相似文献   

6.
采用微弧氧化方法,通过在电解液中掺杂不同粒径碳化硅颗粒,在Ti-6Al-4V合金表面制备含不同粒径碳化硅的陶瓷膜层。利用扫描电子显微镜、X射线衍射仪和摩擦磨损实验机研究了膜层的微观形貌、结构物相以及摩擦磨损性能。实验结果表明,碳化硅对钛合金微弧氧化膜层表面形貌以及摩擦磨损性能影响显著,较小粒径碳化硅颗粒引入微弧氧化膜层可以显著降低微弧氧化膜层孔隙率,增强膜层表面致密度,较大提高膜层减摩耐磨性能。其中1~2μm粒径的碳化硅对膜层耐磨性的提高效果最为显著。较大粒径碳化硅难以通过尺度较小的微弧氧化孔进入微弧氧化层,减摩耐磨性能提高较小。  相似文献   

7.
采用含Ca、P电解液,450V微弧氧化在Zr-4合金表面制备氧化膜层,在25%小牛血清润滑条件下做球盘往复式摩擦磨损试验,重点研究了氧化膜层的摩擦磨损特性。结果表明,微弧氧化膜层含Ca、P,主要由立方相氧化锆、四方相氧化锆和少量单斜相氧化锆构成,膜层表面粗糙多孔,有少量的微裂纹。Zr-4合金微弧氧化层与Si3N4球的摩擦因数低于Zr-4合金与Si3N4球的,氧化膜层硬度较高,摩擦副间的接触面积较小,膜层微孔储存小牛血清湿式润滑作用,均有利于摩擦因数降低。Zr-4合金微弧氧化层磨损量明显低于Zr-4合金,微弧氧化层硬度高是主要原因。Zr-4合金摩擦磨损以显微切削机制为主,微弧氧化层摩擦磨损则兼有疲劳剥落和显微切削两种机制。  相似文献   

8.
在硅酸盐电解液体系中对7075铝合金表面采用微弧氧化(MAO)法制备陶瓷膜层,并借助扫描电镜、三维立体显微镜、X射线衍射仪、显微硬度计、涂层附着力划痕仪和摩擦磨损实验机等对微弧氧化膜层的形貌及性能进行研究。结果表明:电流密度对微弧氧化膜层的组织与性能有较大影响。α-Al_2O_3是微弧氧化膜层的主要组成相,微弧氧化膜层具有较好的显微硬度及耐磨性能。当电流密度达到10 A/dm~2时,膜层的显微硬度与耐磨性能最优。  相似文献   

9.
添加剂对铝合金微弧氧化陶瓷膜耐磨性的影响   总被引:1,自引:0,他引:1  
缪姚军  沈承金  王德奎 《热处理》2007,22(5):34-36,39
研究了铝合金在硅酸盐和磷酸盐复合溶液体系中微弧氧化膜的耐磨性,采用XRD和SEM分析了铝合金微弧氧化膜的物相和表面形貌,采用UMT-Ⅱ型微观摩擦磨损试验机测试了膜层的摩擦磨损性能。研究结果表明,添加剂Na2WO4和M2提高了微弧氧化陶瓷涂层的耐磨性,稳定剂胺盐使微弧氧化膜更致密、更光滑,从而减小了氧化膜的前期磨损失重。  相似文献   

10.
采用X射线衍射仪、扫描电镜、摩擦磨损试验机和电化学分析等手段研究了纳米添加剂对铸造铝合金微弧氧化陶瓷涂层的相组成、微观结构、耐磨损和耐腐蚀性的影响。结果表明:ZnO或SiO2纳米粉末的添加都使得微弧氧化陶瓷涂层的表面更加致密,膜层的耐磨性和耐蚀性有明显提高;添加纳米ZnO所产生的提升效果优于纳米SiO2产生的提升效果。  相似文献   

11.
铝合金的微弧氧化研究   总被引:20,自引:4,他引:16  
在硅酸钠和氢氧化钠电解液中利用微弧氧化技术在LY12铝合金表面生成陶瓷膜层.对膜层进行了SEM和TEM观察.对微弧氧化过程中电参数的变化规律进行了探讨,并分析了电参数对微弧氧化的影响.结果表明:在本实验条件下,用微弧氧化工艺在铝合金表面可制得致密的、厚度达200μm的氧化膜,膜层与铝基体的结合层形成了纳米晶相.电参数对陶瓷层的厚度、硬度、粗糙度都有较大的影响.对微弧氧化膜层的钢球和陶瓷球磨损的对比可知,与钢球的磨损主要是粘着磨损,对陶瓷球的磨损主要是磨料磨损.  相似文献   

12.
通过微弧氧化法,在加入纳米TiO_2添加剂的硅酸盐电解液中,在ZL101A铸造铝合金基体上制备了含有TiO_2的陶瓷涂层。采用扫描电镜、X射线衍射仪、体视显微镜和摩擦磨损试验,研究了纳米添加剂浓度对该涂层摩擦性能的影响。结果表明,纳米添加剂进入到陶瓷涂层中,涂层表面变得更加致密。膜层硬度、厚度随添加剂浓度的增加而增加。同时,一定范围内,随纳米添加剂浓度的增加,磨损量逐渐较小,摩擦系数减小,添加剂浓度为20 g/L时制备的涂层具有最好的磨损性。  相似文献   

13.
铝合金微弧氧化陶瓷膜层的应用主要取决于膜层表面质量,而影响表面质量的因素有很多。在恒压下采用固定的氧化工艺对不同表面粗糙度的7075铝合金进行微弧氧化处理,并通过粗糙度仪、测厚仪、划痕仪、高温摩擦磨损试验机、X射线衍射仪(XRD)和扫描电镜(SEM)研究了基体粗糙度对膜层表面质量的影响及形成机理。结果表明:在固定的微弧氧化工艺参数下,随着基体粗糙度的降低,膜层表面粗糙度和厚度及其分布随之下降,且下降趋势逐渐变缓并趋于稳定,而膜层结合力随之增强,但对耐磨性的影响不大。此外,对于基体粗糙度大的铝合金,微弧氧化处理能有效降低其膜层表面粗糙度,而对于基体粗糙度小的铝合金,微弧氧化处理反而增加了膜层表面粗糙度。  相似文献   

14.
氧化时间对 ZA 43 合金微弧氧化膜摩擦磨损性能的影响   总被引:2,自引:2,他引:0  
崔联合  彭桂枝  张迎涛 《表面技术》2014,43(2):32-35,41
目的研究ZA43合金微弧氧化陶瓷膜的摩擦磨损特性随氧化时间的变化规律。方法制备微弧氧化时间不同的ZA43合金微弧氧化陶瓷膜样品,采用球-盘磨损方法进行摩擦磨损实验,分析陶瓷膜磨损前后的形貌、物相组成及元素组成,测试膜层厚度和显微硬度。结果陶瓷膜主要由α-Al2O3和γ-Al2O3相组成。随着氧化时间的延长,陶瓷膜厚度和平均硬度逐渐增大。在干摩擦条件下,陶瓷膜的摩擦系数和磨损失重随氧化时间的延长而降低。结论随着氧化时间的延长,ZA43合金微弧氧化陶瓷膜的耐磨性逐渐提高,其磨损机制以磨粒磨损为主。  相似文献   

15.
通过向Na2Si O3-Na Al O2复合电解液体系中添加纳米Si C,经过微弧氧化处理后在AZ91D镁合金表面制备含纳米SiC的复合陶瓷层。利用SEM、膜层测厚仪、XRD、EDS和维氏硬度计分别研究膜层的微观形貌、厚度、相结构、元素组成及硬度。采用摩擦磨损试验机对镁合金基体和膜层的干滑动磨损行为进行研究,运用动电位极化曲线试验和交流阻抗法测量镁合金基体和膜层在3.5%Na Cl溶液中的耐蚀性能。结果表明:向电解液中添加纳米Si C后,微弧氧化的起弧电压和终止电压均下降。经纳米SiC复合处理后,微弧氧化膜层的孔径减小,致密性提高;与未添加纳米Si C的膜层相比,其厚度和硬度都得到提升,耐磨性与耐蚀性均增强。  相似文献   

16.
通过超声辅助微弧氧化的方法,在掺杂纳米Al_2O_3颗粒的硅酸盐溶液中制备AZ31B镁合金表面耐蚀耐磨涂层。采用SEM和XRD表征涂层的表面/截面形貌及物相组成,利用电化学方法考察基体及涂层样品在3.5%Na Cl溶液中的腐蚀行为,利用球-盘干磨损实验考察膜层的室温摩擦磨损行为。结果表明:与改性前相比,掺杂Al_2O_3颗粒可提高陶瓷膜致密性,并促进膜层生长,表面微孔分布更均匀,尺寸更小,其物相组成主要包括Mg O,Mg Si O3和Al_2O_3;膜层的Icorr降低了一个数量级;在5和10 N载荷下的摩擦系数最低。Al_2O_3颗粒在超声分散和微弧的高温高压作用下,弥散分布于氧化膜及微孔内部,膜层致密化及纳米颗粒的"滚动效应"增强了膜层对基体的耐蚀耐磨防护性能。  相似文献   

17.
目的 提高TC4微弧氧化表面陶瓷涂层的耐蚀性与耐磨性,并研究ZrO2微粒对涂层性能的影响。方法 在不同配比的硅酸钠、磷酸钠、氢氧化钠混合电解液中,通过微弧氧化技术在TC4钛合金表面制备陶瓷涂层,得到最佳电解液配比。将纳米ZrO2微粒添加到电解液中,以制备复合涂层。通过SEM、XRD、电化学工作站以及往复摩擦磨损试验机,研究不同含量ZrO2对膜层的形貌、相结构、耐腐蚀及耐磨性的影响。结果 随着纳米ZrO2浓度的增加,涂层微孔数量和尺寸都减小,膜层的主要组成相为ZrO2、ZrTiO4、TiO2、Ti2O、Al2O3和SiO2。0.9% NaCl溶液中的电化学极化曲线表明,随着ZrO2浓度的增加,涂层的自腐蚀电位不断提高,但当添加剂的含量达到12 g/L时,自腐蚀电位降低。摩擦磨损实验显示,不含ZrO2陶瓷膜层的比磨损率为1.082×10-3 mm3/(N?m),当ZrO2含量为9 g/L时,其比磨损率为3.489×10-4 mm3/(N?m),是未添加颗粒的32.24%。结论 纳米ZrO2微粒的加入有效提高了陶瓷涂层的耐蚀、耐磨性,特别地,当添加量为9 g/L时,涂层的耐蚀性耐磨性最好。  相似文献   

18.
利用微弧氧化法在纯钛材及大变形纯钛材表面制备多孔陶瓷膜层。采用扫描电镜、X射线能谱仪、非接触三维轮廓仪和纳米压痕仪考察了多孔陶瓷膜层的微观形貌、粗糙度和硬度,并用UMT型多功能摩擦磨损试验机评价了多孔陶瓷膜层在小牛血清润滑条件下的摩擦学行为。结果表明,随载荷增加,摩擦系数减少。膜层磨损机制主要为粘着磨损和磨粒磨损。与纯钛材多孔陶瓷膜层相比,大变形纯钛材多孔陶瓷膜层的摩擦系数更低且波动更平稳,耐磨性能更优,这归因于大变形纯钛材多孔陶瓷膜层表面孔隙率更高,硬度更强,硬弹比(H/E)更大。  相似文献   

19.
采用微弧氧化技术,在TC4钛合金表面制备高硬度氧化陶瓷层(MAO),对比研究了TC4钛合金基体与微弧氧化陶瓷层在2种不同位移幅值下的微动磨损行为。结果表明:位移幅值由80μm增大到150μm时,TC4钛合金基体微动损伤机制由粘着磨损和磨粒磨损转变为疲劳磨损和氧化磨损,而微弧氧化陶瓷层的损伤机制始终以氧化磨损为主;位移幅值为80μm时,TC4钛合金基体与微弧氧化陶瓷层磨损量均较小,而摩擦系数大且波动大;位移幅值为150μm时,两者磨损量出现不同程度的增大,而摩擦系数略有下降且趋于平稳;与TC4钛合金基体相比,微弧氧化陶瓷层的平均摩擦系数小,磨损轮廓浅,且磨损量仅为钛合金基体的70%。微弧氧化陶瓷涂层能够保护钛合金基体表面,有效改善TC4钛合金耐磨性。  相似文献   

20.
目的 通过调节负电压参数,制备具有较高硬度与较好耐磨性的2A50铝合金微弧氧化陶瓷层。 方法 通过微弧氧化,利用双极性脉冲电源,在硅酸盐为主的电解液中,于2A50铝合金表面原位生成耐磨的高硬度陶瓷层。通过改变负电压,研究其对微弧氧化陶瓷层相组成、微观结构、显微硬度和摩擦磨损性能的影响规律。利用扫描电子显微镜、X射线衍射仪表征微弧氧化膜层的微观形貌、物相组成。利用显微硬度计测试微弧氧化膜层的硬度,并通过摩擦磨损试验机评价膜层的耐磨性。结果 涂层的主要相组成为γ-Al2O3。陶瓷层由内侧致密层和外部疏松层组成,随着负电压的提高,微孔的数量和尺寸先减少后增大。微弧氧化后,2A50铝合金得到明显强化,经–100 V负电压的微弧氧化,其显微硬度由未处理的75HV0.5提高至1321HV0.5。微弧氧化陶瓷层具有良好的耐磨性,摩擦系数在0.35~0.55之间,其磨损机制为磨粒磨损和粘着磨损共存。结论 正电压较高时,较低负电压可很好地抑制微弧氧化过程中的强放电现象,以获得较为致密、坚硬且耐磨的膜层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号