首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
粒度级配对CL-20基浇注传爆药流变性能的影响   总被引:2,自引:0,他引:2  
以不同粒度的CL-20(140μm、20μm和2μm)为高能固体填料,HTPB为粘结剂,采用捏合工艺制备了具有不同粒度级配的传爆药药浆。采用博勒飞旋转流变仪对传爆药药浆的流变性能进行了测试和对比。结果表明:药浆粘度随粗颗粒含量的增加先减小后增大,当粗细颗粒质量比为2∶1时达到最小;在此比例下,药浆的粘流活化能也较小,综合流变因子最大。此外,粒度级配中粗细颗粒的粒径变化对药浆的粘度也都有明显影响,其中粗颗粒粒径变化对药浆粘度的影响更大。  相似文献   

2.
含硼富燃料推进剂具有较高的质量热值和体积热值,是固体火箭冲压发动机较理想的燃料之一,而无定形硼与黏合剂中的羟基可发生反应,导致推进剂药浆表观黏度增大快、药浆适用期缩短等问题。计算了分别以端羟基聚丁二烯(HTPB)、3,3?二叠氮甲基氧丁环?四氢呋喃共聚醚(PBT)和聚叠氮缩水甘油醚(GAP)为粘合剂的含硼推进剂的理论体积热值,并采用双螺杆转矩流变仪和红外光谱研究了B/HTPB、B/PBT和B/GAP体系在高剪切速率混合过程中的流变和红外特性,分析了硼粉表面酸性杂质与粘合剂端羟基的反应活性。结果表明,经过合理配方设计,B/PBT/AP和B/GAP/AP的质量比为50∶20∶30时的体积热值均超过64.00 MJ·~(-3),大于B/HTPB/AP体系的体积热值(61.08 MJ·dm~(-3))。在剪切速率为355.56 s~(-1)、55℃条件下,含25%硼的B/HTPB体系表观黏度快速增加到260 Pa·s,混合110 min发生凝胶现象;含40%硼的B/PBT体系混合7 h黏度仅从3.63 Pa·s上升到10 Pa·s;含55%硼的B/GAP体系混合7 h黏度由5.96 Pa·s下降到0.33 Pa·s。B/HTPB混合体系红外光谱B—O振动吸收峰随着混合时间的增加而逐渐增强,C—O(伯醇)振动吸收峰随着混合时间的增加而逐渐减弱,而B/PBT和B/GAP体系混合420 min后红外光谱B—O振动吸收峰和C—O(伯醇、仲醇)振动吸收峰几乎没有变化。PBT和GAP端羟基与硼粉酸性杂质的反应活性比HTPB的端羟基的活性低很多,这有利于改善含硼推进剂药浆的工艺性能。  相似文献   

3.
针对沟槽式微通道传爆序列,设计了挤注排气装药技术,采用HMX/CL-20基挤注固化型炸药,研究了其直线沟槽装药传爆性能,确定了较为理想的装药配方。结果表明,该工艺用于小尺寸传爆沟槽装药可行,药体成型平整致密,沟槽装药密度达1.37g·cm-3;理想配方的沟槽装药传爆可靠稳定,截面尺寸1.0mm×1.0mm与0.8mm×0.8mm沟槽通道内平均爆速分别为7 138m.s-1与6979 m·s-1,临界传爆尺寸约0.5mm×0.5mm。  相似文献   

4.
为了获得可在微米尺度下可靠传爆的含能薄膜,以六硝基六氮杂异伍兹烷(CL-20)为主体炸药,以乙基纤维素(EC)和聚叠氮缩水甘油醚(GAP)为复合黏结体系,选用适量的低沸点溶剂,设计了两种适用于微喷直写工艺的油墨配方,并且采用双喷头微喷直写装置对两种油墨材料进行了直写成型。采用扫描电子显微镜、MZ-220SD电子密度计、X射线衍射仪等对成型样品进行了表征,获得了含能薄膜的撞击感度、热分解性能和传爆临界厚度。结果表明:CL-20基含能薄膜表面光滑,内部存在多个微小孔隙, CL-20颗粒较小,晶型为ε型,含能薄膜的成型密度为1.547 g·cm-3,达到最大理论密度的79.2%。CL-20基含能薄膜的热分解表观活化能为241.21 kJ·mol-1,撞击感度特性落高为65.7 cm,临界传爆尺寸为1.0 mm×0.045 mm。  相似文献   

5.
尚帆  宋秀铎  郑伟  王江宁 《含能材料》2015,23(10):936-940
为了研究聚乙烯醇缩丁醛(PVB)基高固体含量推进剂的力学性能,采用静态力学试验分析了不同黏度PVB、黏度为45 m Pa·s和300 m Pa·s的PVB配合和增塑剂邻苯二甲酸二丁酯(DBP)及乙酰柠檬酸三丁酯(ATBC)对PVB基高固体含量推进剂力学性能的影响。采用动态热机械分析(DMA)研究了不同黏度PVB和两种增塑剂对PVB基推进剂动态力学性能影响。结果表明,随着PVB黏度增加,推进剂高温(50℃)拉伸强度增大,常温(20℃)和高温延伸率降低。黏度为45 m Pa·s与300 m Pa·s的PVB以1∶3的质量比配合做粘合剂可使推进剂拉伸力学性能达到含这两种单一黏度PVB的推进剂的中间值。用ATBC替代DBP,推进剂的低(-40℃)、常温延伸率下降33%。含黏度为45 m Pa·s PVB的PVB基推进剂有较强的α-转变。含增塑剂DBP的推进剂有较强的β-转变。  相似文献   

6.
吴亚琛  沈忱  孙晓乐  焦清介  刘海伦  闫石 《兵工学报》2020,41(12):2458-2465
为研究浇注六硝基六氮杂异伍兹烷(CL-20)基混合炸药的金属驱动特性,制备了CL-20∶端羟基聚丁二烯(HTPB)∶Al-Zn配比为84∶11∶5的浇注CL-20基炸药试样GWL. 测试GWL密度、爆速、爆压、机械感度以及快速烤燃、慢速烤燃和枪弹撞击3项不敏感特性,发现其炸药密度为1.78 g/cm3、爆速为8 750 m/s、爆压为33.21 GPa,不敏感试验反应等级均为燃烧,机械感度也符合炸药使用要求。采用50 mm标准圆筒试验测试了GWL炸药试样的做功能力,发现GWL炸药试样驱动圆筒在41 mm特征点上的速度为1 730 m/s. 应用有限元分析软件Autodyn时圆筒试验过程进行数值模拟计算,通过对比试验结果与数值模拟结果,得到GWL炸药的JWL状态方程;设计CL-20∶HTPB配比为89∶11的无金属粉炸药试样GC,在相同试验条件下测试了GC的机械感度与爆炸驱动能力,结果表明GC与GWL两种炸药试样驱动能力相当,但是GC炸药的机械感度高于GWL炸药。采用Autodyn软件建模对比研究了GWL炸药与C-1炸药和LX-14炸药的驱动能力,结果显示:GWL炸药驱动破片的终速比LX-14炸药高2.6%;其驱动性能优良,是一种高能低感度的新型CL-20基浇注炸药。  相似文献   

7.
为了研制出力学性能优异的微机电系统(MEMS)火工品用微尺度传爆药,以六硝基六氮杂异伍兹烷(CL-20)为主体炸药,以端羟基聚醚(HTPE)/硝化纤维素(NC)为复合黏结体系,以乙酸乙酯为共溶剂,加入一定量的甲苯二异氰酸酯(TDI)设计出一种全溶式炸药油墨,利用喷墨打印技术实现了高精度装药成型,利用异氰酸根与羟基的交联反应实现了微装药力学性能增强。采用电子密度仪、扫描电子显微镜、差示扫描量热仪、X射线衍射仪、纳米压痕仪分别对打印样品的密度、微观形貌、热安定性、炸药晶型和力学性能进行了表征。结果表明,打印样品实测密度为1.70 g·cm-3,可达最大理论密度的88.54%,打印样品中CL-20由ε晶型转变为β晶型,其热分解表观活化能为173.00 kJ·mol-1,比原料CL-20提升了13.17 kJ·mol-1。打印样品弹性模量可高达10.47 GPa,硬度为0.22 GPa,展现了良好的力学性能。喷墨打印装药具有良好的传爆能力,临界爆轰尺寸和爆速分别为1 mm×0.18 mm和8054 m·s-1。  相似文献   

8.
为了解决六硝基六氮杂异伍兹烷(CL-20)基全液型炸药油墨微喷成型的主体炸药转晶和成型效率低等问题,以聚乙烯醇(PVA)的水溶液为胶体悬浮液,以微纳CL-20颗粒为悬浮颗粒,设计并配制了与3D微喷打印相兼容的悬浮型炸药油墨,并采用3D微喷技术对炸药油墨进行打印成型。通过密度计、激光共聚焦显微镜、扫描电镜、X射线衍射仪、纳米压痕仪对成型样品的性能进行表征,并测试了样品的撞击感度、摩擦感度和爆速,在此基础上研究了微纳CL-20颗粒含量与微型传爆药性能之间的关系。结果表明:随着炸药油墨中微纳CL-20颗粒含量的增大,墨滴成型后“咖啡环”现象逐渐明显,药线单层沉积厚度增加,打印成型效率增大,但孔隙率则逐渐增大。主体炸药CL-20在3D微喷打印过程中没有晶型的转变,仍为ε型。当成型样品中微纳CL-20颗粒的含量与黏结剂的比例为9∶1时,样品的实测密度为1.638 g·cm-3(86.19%TMD),弹性模量为5.43 GPa;其撞击感度、摩擦感度和爆速分别为4 J、240 N和7689 m·s-1,展现了较好的安全性能及微尺度传爆能力。  相似文献   

9.
为了考察六硝基六氮杂异伍兹烷(CL-20)基炸药较典型奥克托今(HMX)基炸药的爆炸驱动性能提升幅度,选取典型CL-20基压装混合炸药和HMX基压装混合炸药(JO-8)开展了爆速、爆压、标准圆筒对比实验测试,并设计了预制破片驱动装置和聚能装药结构,分别开展炸药径向、轴向驱动静爆/静破甲威力实验,实测了爆炸驱动破片的速度以及射流对钢靶静破甲深度。结果表明,CL-20基炸药(密度为1.95 g·cm-3)的爆速、爆压和格尼系数较JO-8炸药(密度为1.83 g·cm-3)分别提高4.8%、16.7%和3.5%。在相同结构下,CL-20基炸药驱动预制破片速度、动能较JO-8炸药分别提高5.1%~7.3%、10.5%~15.1%;在5.5倍装药直径(CD)炸高条件下,装填CL-20基炸药的聚能装药较装填JO-8炸药的静破甲能力提高3.2%~12.6%。  相似文献   

10.
微通道挤注药剂配方与装药工艺研究   总被引:2,自引:0,他引:2  
针对起爆逻辑网络,探索采用奥克托今(HMX)基塑性粘结炸药作挤注型传爆药,运用分段挤压注入沟槽的工艺方式对直线微通道装药。通过正交试验研究了HMX粒度、Viton A含量、增塑剂种类及用量对装药与传爆性能的影响。结果表明,实验塑性炸药挤注工艺用于小尺寸传爆沟槽装药可行,装药致密、均匀;细化HMX含量为97%的传爆药不适于挤注装药;粘结剂低于3%时,挤注药体成型变差;增塑剂用C2与C3的塑性炸药表面更平滑,柔韧性更强;达到可传爆密度的前提下,HMX中小粒度颗粒维持相当含量是沟槽传爆药可靠传爆的必要条件;E级HMX 47.5%、细化HMX 47.5%、Viton A 5%、增塑剂C3 2%(外加)为最优挤注型传爆药装药配方,装药平均密度1.44g/cm3,1mm×1mm沟槽内平均爆速达6959m/s,直线传爆临界直径0.5mm.  相似文献   

11.
为了获得高能高强熔铸炸药,以2,4-二硝基苯甲醚(DNAN)和三硝基甲苯(TNT)为低共熔载体,六硝基六氮杂异伍兹烷(CL-20)为高能组分,采用浇铸成型工艺,成功制备了CL-20/DNAN/TNT熔铸炸药。研究了微纳米CL-20颗粒级配以及N-甲基-4-硝基苯胺、三-(2-氯乙基)磷酸酯、邻苯二酚三种功能助剂对CL-20/DNAN/TNT熔铸炸药性能的影响。对制备的CL-20基熔铸炸药分别进行了扫描电子显微镜(SEM)、粘度、密度及均一性、X射线衍射(XRD)、机械感度、力学性能以及爆速等分析测试。结果表明,当原料粗颗粒CL-20和100 nm CL-20的质量比为70:30,添加0.5%三-(2-氯乙基)磷酸酯时,制备的熔铸炸药表面光滑,内部无明显缺陷,密度均一性好,与只含有粗颗粒CL-20的熔铸炸药相比,其撞击感度降低了32.7%,摩擦感度降低了57.1%,抗压强度从7.93 MPa提高到33.74 MPa,抗拉强度从3.48 MPa提高到4.94 MPa,爆速从8188 m·s~(-1)提高到8225 m·s~(-1)。  相似文献   

12.
通过加入微量溶剂,采用超高效混合技术,在70 g的加速度条件下反应30 min制备得到摩尔比为2∶1的超细六硝基六氮杂异伍兹烷与奥克托今(CL-20/HMX)共晶,通过X射线粉末衍射、差示扫描量热法鉴定了CL-20/HMX共晶的形成,并对其形貌、粒度、感度等进行了表征测试。结果表明:制备的超细CL-20/HMX共晶纯度为92.6%,共晶炸药呈规则块状、表面光滑、粒径小于1μm、粒度分布均匀,其X射线衍射图在11.558°,13.264°,18.601°,24.474°,33.785°,36.269°处出现新的较强的衍射峰。超细CL-20/HMX共晶放热分解过程中只有一个放热分解峰,其放热峰温为248.3℃,其分解放热量(2192.1 J·g^-1),显著高于相同摩尔比的物理混合物(1327.3 J·g^-1)。按照GJB772A-1997《炸药试验方法》测得的摩擦感度比原料CL-20降低了16%,特性落高比原料CL-20提高28.6 cm,比原料HMX提高11.5 cm,形成共晶后安全性能更高。采用DSC法研究了超细CL-20/HMX共晶与推进剂常用组分均聚叠氮缩水甘油醚(HGAP)、硝化甘油/1,2,4-丁三醇三硝酸酯混合物(NG/BTTN)、缩二脲三异氰酸酯(N-100)、高氯酸铵(AP)、铝粉(Al)的相容性,发现超细CL-20/HMX共晶与NG/BTTN、AP、Al的相容性较好,与HGAP、N-100不相容。  相似文献   

13.
六硝基六氮杂异伍兹烷(CL-20)的粒度和形貌对其感度、安全性以及填药密度有重要的影响。研究通过控制和优化重结晶工艺条件,分别探索超声辅助重结晶法和反溶剂法中不同因素以及搅拌器类型对CL-20晶体粒度的影响。在超声辅助重结晶法中,考察了超声连续震动和间歇震动频率以及不同超声频率(20~40 kHz)对生产小粒经产品的影响;在反溶剂法中,以乙酸乙酯和三氯甲烷为良溶剂和不良溶剂,考察了三氯甲烷滴加速度(20、50、100 mL·h-1)、三氯甲烷与乙酸乙酯滴加量比例(1∶1、1∶2、1∶3),重结晶时间(24、48、72 h)以及重结晶温度(30、40、50℃)对大粒径产品的影响。通过设计正交试验,确定了最优条件;在对搅拌器对产品影响的研究中,选择了四直叶开启涡轮式、六直叶涡轮式和双层分散盘三种搅拌器类型以及相应的多种转速对产品的粒度和形貌的影响。结果表明,间歇超声辅助重结晶可显著减小晶体粒度,采用频率40 kHz,每震动30 min,停5 min的超声方式,可以获得平均粒度为14μm的CL-20颗粒;反溶剂法控制粒径的研究中,结晶时间72 h、结晶温度30℃、三氯甲烷滴加速度为20 mL·h-1、滴加量为150 mL时,可获得大粒径的CL-20产品(平均粒度为140μm);采用双层分散盘制备的CL-20晶体外形为类球形,表面光滑均匀,粒径在40~100μm之间可控。对比四直叶开启涡轮式和六直叶涡轮式搅拌器制备的晶体,采用双层分散盘制得的产品撞击感度和摩擦感度较低,撞击感度特性落高值和摩擦感度爆炸概率分别为23.5 cm和44%。  相似文献   

14.
张伟  闫石  郭学永  任慧  焦清介 《兵工学报》2018,39(7):1299-1307
为研究六硝基六氮杂异伍兹烷(CL-20)的能量潜力,结合含能粘合剂端羟基聚叠氮缩水甘油醚(GAP),计算了GAP、CL-20、氧化剂、可燃剂四元混合炸药的爆炸能量。计算结果表明,使用高氯酸锂作氧化剂可显著提高体系的能量密度,但将其在浇注混合炸药中得到应用需要进一步改性研究。制备了GAP、CL-20、高氯酸铵、铝粉四元混合炸药样品,利用水下爆炸测试方法,测试并估算了其水下爆炸能量。试验结果表明:在该四元体系中,CL-20含量为15%~20%时,体系能量密度可得到最大值;在CL-20含量为20%条件下,铝氧比为0.50时冲击波能可取得最大值,铝氧比为0.51~0.71时CL-20混合炸药能量密度可达到最大,通过水下爆炸试验数据估算其能量密度可达到2.88倍TNT当量。  相似文献   

15.
直写技术具有安全、批量、精确图形化的优点,是含能微器件精密、高效装药成型未来发展的趋势。基于六硝基六氮杂异伍兹烷(CL-20)基炸药墨水,采用Ansys软件模拟和直写沉积实验相结合的方法,研究了驱动压力、出口直径对挤出速率的影响。采用Matlab软件分析了直写沉积数据,运用插值分析法得到了有效的直写参数,建立了描述直写沉积规律的数学模型。结果表明,制备的CL-20基炸药墨水为非牛顿流体,黏度范围为10~350 Pa·s。当剪切力大于650 Pa时损耗模量逐渐大于储能模量。当驱动压力大于350 kPa时,CL-20基炸药墨水黏度变小,使得挤出速率变化率变大。当出口直径大于0.6 mm时,CL-20基炸药墨水挤出能量损失变小,使得挤出速率变化率变大。建立了直写参数关系式u_1=0.00047×d_1~(0.6516)×p~(1.5291),结果表明,驱动压力对挤出速率的影响大于出口直径对挤出速率的影响。  相似文献   

16.
使用钝感炸药三氨基三硝基苯(TATB)对高能炸药六硝基六氮杂异伍兹烷(CL-20)进行包覆和降感处理,制备过程中以1%的Estane作为粘结剂,5%的TATB作为钝感剂,采用水悬浮法制备了CL-20基PBX,并对其进行SEM、XRD、DSC以及撞击感度性能测试。结果表明:TATB可以有效地包覆在CL-20表面,在包覆过程中CL-20晶型未发生改变;与未添加TATB的CL-20/Estane粘结炸药相比,热爆炸临界温度提升了0.08℃,活化能提高了7.09k J·mol-1,并且其撞击感度明显降低,特征落高(H50)由30.64cm提升至44.57cm,提升了45.5%。  相似文献   

17.
为增强摧毁舰艇的能力,对CL-20 基含铝炸药的铝氧比(Al/O)对水下能量输出结构的影响进行研究。设 计不同Al/O 的CL-20 基含铝炸药配方,采用水下爆炸威力实验,对几种混合炸药配方的水下能量输出结构进行分 析,剖析了Al/O 对CL-20 基含铝炸药的水下冲击波能、水下气泡能以及水下能量输出结构的影响规律。实验结果 表明:CL-20 基含铝炸药水下的冲击波能、气泡能和总能量随Al/O 的增加呈现先增加后减少,且水下爆炸总能量在 Al/O 为0.75 左右时有一个最大值,约为6.43 MJ/kg。  相似文献   

18.
喷雾和超声辅助制备超细球形化ε-CL-20   总被引:1,自引:1,他引:0  
徐洋  焦清介  崔庆忠  徐文峥  张晓新 《含能材料》2016,24(11):1075-1079
采用喷雾和超声辅助重结晶装置制备了超细球形化六硝基六氮杂异伍兹烷(CL-20)颗粒。用扫描电镜(SEM)、X-射线衍射仪(XRD)测试表征了样品的形貌、粒径、晶型。用差示扫描量热法(DSC)分析了其热安定性,采用Kissinger公式和Zhang-Hu-Xie-Li热爆炸临界温度计算式,计算了热分解反应的表观活化能和热爆炸临界温度。按GJB772-1997方法测试了其机械感度。结果表明,制备的超细CL-20为粒径400nm左右的球形颗粒,分散性良好,其晶型为ε型。超细CL-20的热安定性较原料有所降低。原料CL-20和超细CL-20的热爆炸临界温度分别为242.85℃和241.64℃,表观活化能分别为156.04kJ·mol~(-1)和165.11kJ·mol~(-1)。与原料CL-20相比,超细CL-20的撞击感度明显降低,特性落高由14.98cm提高到31.95cm,摩擦感度也降低,爆炸概率从100%降低到40%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号