首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problems involving periodic contacting surfaces have different practical applications. An inverse heat conduction problem for estimating the periodic Thermal Contact Conductance (TCC) between one-dimensional, constant property contacting solids has been investigated with conjugate gradient method (CGM) of function estimation. This method converges very rapidly and is not so sensitive to the measurement errors. The advantage of the present method is that no a priori information is needed on the variation of the unknown quantities, since the solution automatically determines the functional form over the specified domain. A simple, straight forward technique is utilized to solve the direct, sensitivity and adjoint problems, in order to overcome the difficulties associated with numerical methods. Two general classes of results, the results obtained by applying inexact simulated measured data and the results obtained by using data taken from an actual experiment are presented. In addition, extrapolation method is applied to obtain actual results. Generally, the present method effectively improves the exact TCC when exact and inexact simulated measurements input to the analysis. Furthermore, the results obtained with CGM and the extrapolation results are in agreement and the little deviations can be negligible.  相似文献   

2.
The temperature distribution in combustion engine components is highly influenced by thermal contact resistance. For the prediction and optimisation of the thermal behaviour of modern combustion engines knowledge about the contact heat transfer is crucial.Available correlations to predict the contact resistance are simplifications of the real geometric conditions and only tested for moderate pressures up to 7 MPa. Typical combustion engine applications include contact pressures up to 250 MPa.The experimental approach presented here to derive the thermal contact resistance in terms of contact heat transfer coefficients for high temperature and high pressure conditions is based on transient infrared temperature measurements. Two bodies initially at two different temperatures are brought in contact and the surface temperature histories are recorded with a high-speed infrared camera. The contact heat flux is calculated by solving the related inverse problem. From the contact heat flux and from the measured temperature jump at the interface the contact heat transfer coefficient is calculated.The inverse method used for the calculation of the heat flux is based on the analytical solution for a semi-infinite body and a step response to a Neumann boundary condition. This method provides an algorithm that is used in a sequential manner. The use of “future” temperature data greatly improve the stability of the governing equations and reduce the sensitivity to measurement errors.  相似文献   

3.
This paper investigates the heat transfer characteristics of a thermoelectric generator. The influence of heat dissipation intensity to the sub-thermal resistances distribution is experimentally studied. Based on the thermal network analysis and finite time thermodynamics, an analytical model including all thermal resistances (in both thermocouples and external heat exchangers) is developed to predict the performance of the generator. The results show that the computed values of output power agree well with the experimental values. The heat transfer enhancement on the generator cold side greatly reduces the cold side temperature and thermal resistance, and obviously improves the output power. Compare with air natural convection cooling, the main thermal resistance changes from the resistance between the fins and the ambient to the thermal contact resistances between the generator and the heat sink at the conditions of forced convection and water cooling. This study may be guide the optimization of generator structure.  相似文献   

4.
The problem of heat conduction in a still cylinder exposed to non‐uniform convective conditions on both inner and outer surfaces has been addressed by a method based on the series solution and a novel analytic solution is derived to predict the temperature field in the cylinder. Compared to previous available results this method allows a simpler implementation and its almost straightforward extension to multilayered cylinders represents one of the main advantages over more complex numerical solutions. As an example of application the effect of the non-uniform distribution of heat transfer coefficients on the solid temperature field and the heat transferred is analysed, as function of the fluid flow regime, the Biot number and the cylinder thickness.  相似文献   

5.
Fins are the extended surfaces that are utilized to afford a significant increase in the surface area for heat transference between a heated source and a colder ambient liquid. To enhance the heat transference rate from the exterior surface of a circular conduit, radial, or concentric annular fins are used. Fins are utilized in heat exchanging devices like superheaters, electrical equipment, computer CPU heat sinks, car radiators, refrigeration, and heat exchangers. Motivated by these applications, the current paper explores the thermal attribute of an annular fin with variable thermal conductivity. The framed equations are articulated in terms of nonlinear ordinary differential equations. One of the most effective techniques, the differential transformation method has been implemented to find the analytical solution. The domination of nondimensional parameters on the thermal gradient of the fin has been analyzed graphically. Furthermore, the variation in radial and tangential stress in an annular fin for various dimensionless parameters has been examined with a graphical explanation. Results reveal that the thermal gradient of fin increases for improved values of variable thermal conductivity parameters. The greater values of thermogeometric parameters result in a higher heat transfer.  相似文献   

6.
The present paper strives for optimization of the cooling system of a liquid‐propellant engine (LPE). To this end, the new synthetic metamodel methodology utilizing the design of experiment method and the response surface method was developed and implemented as two effective means of designing, analyzing, and optimizing. The input variables, constraints, objective functions, and their surfaces were identified. Hence, the design and development strategy of combustion chamber and nozzle was clarified, and 64 different experiments were carried out on the RD‐161 propulsion system, of which 47 experiments were approved and compatible with the problem constraints. This engine used all three modes of cooling: the radiation cooling, the regenerative cooling, and the film cooling. The response surface curves were drawn and the related objective function equations were obtained. The analysis of variance results indicate that the developed synthetic model is capable to predict the responses adequately within the limits of input parameters. The three‐dimensional response surface curves and contour plots have been developed to find out the combined effects of input parameters on responses. In addition, the precision of the models was assessed and the output was interpreted and analyzed, which showed high accuracy. Therefore, the desirability function analysis has been applied to LPE's cooling system for multiobjective optimization to maximize the total heat transfer and minimize the cooling system pressure loss simultaneously. Finally, confirmatory tests have been conducted with the optimum parametric conditions to validate the optimization techniques. In conclusion, this methodology optimizes the LPE's cooling system, a 2% increase in the total heat transfer, and a 38% decrease in the pressure loss of the cooling system. These values are considerably large for the LPE design.  相似文献   

7.
A novel technique for assessing heat transfer characteristics of salt‐based phase change materials (PCM) was proposed here. The method is based on solution to inverse heat conduction problem. Nanoparticles (Graphite, Graphene, and multi wall carbon nanotube [MWCNT]) were dispersed in the PCM (KNO3) to assess their respective influence on heat transfer in the PCM. Graphite added PCM offered highest heat flow values and heating rates, while the pure salt‐PCM offered the least. The probe material had a significant influence on the heat transfer rates at the PCM‐probe interface.  相似文献   

8.
The objective of this article is to study the estimation of an overall heat transfer coefficient in a partially filled rotating cylinder. Herein is an inverse analysis for estimating the overall heat transfer coefficient in an arbitrary cross-section of the aforementioned system from the temperatures measured on the shell. The material employs the finite-volume method to solve the direct problem. The hybrid effective algorithm applied here contains the local optimization algorithm to estimate the unknown parameter by minimizing the objective function. The data measured here are simulated by adding random errors to the exact solution. An investigation is made of the impact of the measurement errors on the accuracy of the inverse analysis. Two-optimization algorithms in determining the overall heat transfer coefficient are used. It is determined that the Conjugate Gradient Method is better than the Levenberg-Marquardt Method because the former produces greater accuracy for the same measurement errors. The resulting observation indicates that good agreement exists between the exact value and estimated result for both algorithms.  相似文献   

9.
《传热工程》2012,33(1):50-64
Abstract

Numerical study of double jet impingement cooling of an isothermal surface with Al2O3-water nanofluid under the influence of magnetic field was performed. Galerkin-weighted residual finite element method was utilized for the solution of the governing equations. The numerical simulations were performed for various values of Reynolds number (between 100 and 400), solid particle volume fraction (between 0 and 4%), and Hartmann number (between 0 and 2.5). The ratio of the slot-to-plate distance was varied between 4 and 16 whereas ratio of the distance between the slots to slot width was varied between 5 and 22.5. It was observed that magnetic field retarded the fluid flow and reduced the local and average heat transfer. At the highest value of the Hartmann number, the fluid cannot reach the stagnation point. Depending on the distance between the slots and slots to plate distance, average heat transfer enhances by about 46% and its value increases linearly with nanoparticle volume fraction. This study is particularly important where magnetic field is present and weakens the convective heat transfer characteristics in jet impingement cooling whereas it is possible to enhance its thermal performance by utilization of nanoparticles.  相似文献   

10.
The presented paper describes a method of solving the inverse problems of heat conduction, consisting in solving the Poisson equation for a simply connected region instead of the Laplace equation for a multiply connected one, like a gas-turbine blade provided with cooling channels. The considered method consists in determining unknown values of the source (heat sink) power in the cooling channels for a given external heat transfer situation to achieve as close as possible an isothermal outer surface. Afterwards the temperature and heat flux distributions at the cooling channel walls are determined. Since the unknown source power is sought, the problem is an inverse one. Taking into account the sought values the method is reckoned among the class of the fictitious source methods and presents an optimization scheme. Using an exemplary gas turbine blade cooling configuration, the results of the calculation obtained with this method have been compared to the results achieved with an inverse method using the boundary element method for a multiple connected region.The results obtained with both methods within the optimization scheme approximated each other. Nevertheless, the results for the inverse method shown in the present paper gave nearly no oscillations, which is important in case of the blades with other geometric features of the cooling channels.  相似文献   

11.
Thermal issues associated with electric vehicle battery packs can significantly affect performance and life cycle. Fundamental heat transfer principles and performance characteristics of commercial lithium‐ion battery are used to predict the temperature distributions in a typical battery pack under a range of discharge conditions. Various cooling strategies are implemented to examine the relationship between battery thermal behavior and design parameters. By studying the effect of cooling conditions and pack configuration on battery temperature, information is obtained as to how to maintain operating temperature by designing proper battery configuration and choosing proper cooling systems. It was found that a cooling strategy based on distributed forced convection is an efficient, cost‐effective method which can provide uniform temperature and voltage distributions within the battery pack at various discharge rates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This study consists of determining by inverse method the set-point temperature of the fluid flowing through heating plates in a Resin Transfer Molding (RTM) process tool so as to reach a predetermined thermal history in the composite part. Although the described methodology is applied in a specific mold in this paper, it remains general and may be transposed to a large scale of molding configuration. The considered mold is metallic and composed of several parts. Assembling these parts is not possible without introducing imperfect contacts that perturb heat transfer between them. The heat transfer at the interface is modeled by thermal contact resistances (TCR) whose values are unknown. In the case of metallic molds TCR are of the same order of magnitude than the equivalent thermal resistance of the mold. Therefore they cannot be neglected. The influence of these TCR is then a key-point on heat transfer since a bad knowledge of their values implies a wrong estimation of the temperature field. Then before being able to estimate the set-point of the temperature of the thermoregulated fluid, it is necessary in a first stage to evaluate the most influent TCR that are spatially and time dependent. Their determination is achieved by an optimization approach and carried out on a 2D transverse cut of the mold. Experimental temperature measurements in the mold are matched to the computed responses of the heat conduction model. A least square criterion is minimized by using the conjugate gradient algorithm. The gradient of the criterion is determined by solving a set of adjoint equations. After the identification of these parameters, the same optimization method is used to compute the mold set point temperature. It is notable that the same set of adjoint equations is used to solve both problems.  相似文献   

13.
The present method utilized the hue-angle method to process the color images captured from the liquid crystal color play. Instantaneous temperature readings from embedded thermocouples were utilized for in situ calibration of hue angle for each data set. The convective heat transfer coefficient results were obtained by performing a 3-D inverse transient conduction calculation over the entire jet impingement target surface and the substrate. The results of average heat transfer coefficients agreed well with previous experimental results of point measurements by thermocouples.Comparison between 1-D and 3-D results indicates that 1-D results are higher than the 3-D results with the local maximum and minimum heat transfer values being overvalued by about 15-20% and the overall heat transfer by approximately 12%. This is due to the fact that 1-D method does not include the lateral heat flows induced by local temperature gradients.  相似文献   

14.
直接接触式蓄热技术利用换热工质与蓄热材料接触并形成对流换热的特点,强化了蓄热器内的换热效果,提高了蓄放热速率,在国内外受到了广泛关注。本文针对直接接触式蓄热技术,从蓄热材料、蓄热器和应用案例三个方面对该技术的发展和研究现状进行了总结,将直接接触式蓄热技术常见材料分为了有机类材料和无机类材料,并对材料的热物性参数和性能进行了比较,讨论了过冷、相分离、导热系数较低和热稳定性等影响材料性能的关键指标。在蓄热器方面,总结了直接接触式蓄热器内材料熔化和流动规律、归纳了直接接触式蓄热器传热和优化方法,针对目前解决直接接触式蓄热器材料沉积问题的措施进行了分析,并给出了建议措施。最后,结合示范工程或商业案例对直接接触式蓄热技术的应用情况进行了回顾,旨在总结应用经验,为该技术的进一步推广提供依据和支持。  相似文献   

15.
The power battery as an indispensable part of electric vehicle has attracted much attention in recent years. Among these, the lithium‐ion battery is the most important option due to the high energy density, good stability, and low discharge rate. However, the thermal safety problem of lithium‐ion battery cannot be ignored. Therefore, it is very necessary to explore an effective thermal management system for battery module. Here, a thermal silica cooling plate‐aluminate thermal plate (SCP‐ATP) coupling with forced convection air cooling system as a thermal management system is proposed for improving the cooling performance of pouch battery module. The results reveal that the heat dissipating performance and temperature uniformity of pouch battery module with SCP‐ATP are greatly improved compared with other thermal management systems. Moreover, the highest temperature can be controlled below 50°C, and the temperature differences can be maintained with 3°C when the SCP‐ATP coupling forced convection is utilized to enhance the heat transfer coefficient. Furthermore, considering the cooling effectiveness and consumption cost comprehensively, the optimal air velocity of the SCP‐ATP coupling forced convection cooling system is 9 m/s. In addition, the SCP‐ATP filling with different proportions of acetone has also been investigated for pouch battery module, indicating that 50% acetone exhibited a better heat transfer effect than the 30% one. Therefore, this research would provide a significant value in the design and optimization of thermal management systems for battery module.  相似文献   

16.
Transient measurements of thermal contact conductance are made on the interface between isotropic rough surfaces of metals in air. We present an analytical solution for temperature distribution of the one‐dimensional symmetric system with the condition of time‐dependent temperatures at two points in each body, and thereby interface temperature drops and heat fluxes can be obtained without the condition of heat‐flux continuity at the interface. Contacting surfaces of rod samples (Naval brass, JIS?SK5 carbon tool steel, and JIS?SUS 304 stainless steel) of 25‐mm diameter are uniformly polished using an emery 320 paper. Transient characteristics of both temperatures and heat fluxes at the interface are experimentally determined using the analytical solution. It is revealed through the transient experiment that the thermal contact conductances are not constant at the early stage, but rapidly increase from zero and that the discontinuity of interface heat‐flux is observed by about 20 percent for all metal pairs. For the contact between dissimilar metals, the dependence of thermal contact conductance on the direction of heat flow is not distinguishable. © 2001 Scripta Technica, Heat Trans Asian Res, 30(4): 341–356, 2001  相似文献   

17.
As part of commercial vehicle disc brake heat dissipation research, thermal contact resistance (TCR) across a bolted joint is analysed. Studies include new and slightly corroded interface surfaces. Measurements show that corrosion approximately doubles TCR, decreasing conductive heat dissipation, leading to higher brake temperatures. To reduce TCR, two methods of interface conditioning are investigated. The application of thermal conductance paste and the use of a thin aluminium gasket at the interface have similar effects, reducing TCR by over 80%. The paper deals with the methodology of measuring TCR and defining its relationship with the change of interface pressure, temperature and interface conditioning. This approach ensures results of a generic nature applicable to a variety of bolted joints.  相似文献   

18.
Estimation of the thermal contact resistance during glass solidification. This paper presents an experimental study of thermal contact conditions during glass moulding. Our goal was to develop an experimental setup to simulate the real contact conditions during the glass solidification and to build a numerical procedure to estimate the thermal parameters characterizing heat transfer at the contact interface (mould–glass). The semi-transparent character of glass was taken into account when building the theoretical heat transfer model. Thus a heat radiation–conduction model was built to simulate heat transfer at the interface during the glass cooling. The study shows that when the coupled conduction–radiation effect is taken into account, the parameter estimation is better. Thermal contact resistance mold–glass was estimated and the quality of heat transfer at the interface was analyzed.  相似文献   

19.
Heat conduction during contact between a heat transfer surface and fluidizing particles, a phenomenon which is one of the effective heat transfer mechanisms in a gas–solid fluidized bed, has been empirically investigated. The temperature profile of the fluidizing particles during the contact period is visualized with the aid of an infrared imager. The visualization reveals that the particles have been considerably heated in the thermal boundary layer on the heat transfer surface before contact. Based on the visualized temperature profile of the particles, the contact conductance between a fluidizing particle and the heat transfer surface is estimated by an in inverse analysis. Using the evaluated contact conductance, the contributions of the conductive heat transfer to the total heat transfer are also evaluated. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(3): 165–181, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10027  相似文献   

20.
固体表面之间接触热阻的辨识研究   总被引:3,自引:0,他引:3  
饶荣水 《工业加热》2003,32(2):16-19
介绍了接触热阻的测量原理和传统的实验装置。从接触界面热耦合的角度,结合传热方程的数值解法和参数辨识方法,对实验数据进行整理。通过与文献中数据的对比,说明本方法的可行性。此方法对热物性变化较明显的实验,更能体现出优越性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号