首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
良导热、形状保持相变蓄热材料的制备及性能   总被引:43,自引:0,他引:43  
肖敏  龚克成 《太阳能学报》2001,22(4):427-430
将石蜡与一热塑弹性体SBS复合制备了在石蜡熔融状态下仍能保持形状稳定的复合相变蓄热材料,复合材料保持了石蜡的相变性,相变潜热可高达纯石蜡潜热的80%,在复合相变材料中加入膨胀石墨后,热传导性有了显著提高,其放热时间比纯石蜡缩短了61%。  相似文献   

2.
以改性膨胀蛭石为吸附材料,以月桂酸和硬脂酸为相变材料,通过熔融共混法与真空吸附法制备定型复合相变材料,然后将其掺入砂浆中制备得到蓄热砂浆。结果表明:复合相变材料经过1000次循环后相变焓为167.6 kJ/kg,变化率仅为3.6%,热稳定性良好,无渗漏现象,掺入30%体积含量复合相变材料的砂浆28 d强度为9.2 MPa。掺有该定型相变材料的蓄热砂浆具有优异的热力学性能,完全可以应用于建筑物围护结构来调节室内温度。  相似文献   

3.
将具有导热系数高,与石蜡相容性较好特点的纳米铝粉加入到液体石蜡中,形成纳米铝粉/石蜡流体,利用膨胀石墨特有的网络状孔隙结构以及对石蜡的高吸附性能,制备出了纳米铝粉/石蜡/膨胀石墨复合相变材料,解决了纳米铝粉在液体石蜡中容易发生团聚和沉降的问题,并通过实验研究了其热物性能。研究结果表明:当石蜡与膨胀石墨质量百分比例为93/7,加入纳米铝粉的质量分数低于3%时,膨胀石墨可以稳定的吸附纳米流体,经反复循环蓄、放热,纳米流体不会出现泄漏问题,且对复合相变材料的体积和蓄热能力没有影响;膨胀石墨的网络状孔隙结构可以抑制纳米铝粉的团聚现象,但随着纳米铝粉含量的增加,纳米颗粒仍会发生团聚现象,复合相变材料的导热系数,蓄、放热速度均呈非线性增加。应控制纳米铝粉的加入量,当纳米铝粉质量分数为2%时,纳米铝粉颗粒未发生明显团聚现象,复合相变材料的热性能较好。  相似文献   

4.
为研究膨胀石墨对石蜡熔化和凝固性能的影响,对膨胀石墨石蜡复合相变蓄热材料的熔化和凝固过程进行数值分析,并与纯石蜡相变蓄热材料的熔化和凝固过程进行对比.且分析不同含量的膨胀石墨及不同壁面温度对石蜡熔化和凝固过程的影响,结果表明:石蜡中添加膨胀石墨能明显缩短石蜡的熔化和凝固时间,且熔化和凝固时间都随着膨胀石墨含量的增加而减少;在同种工况下,与纯石蜡对比,添加1%、2%、5%膨胀石墨的复合石蜡熔化时间分别减少2.14、2.81、9.74倍;凝固时间则分别减少0.77、1.05、3.76倍;壁面温度对复合石蜡的熔化过程影响显著,而对凝固过程影响程度不佳;其中在初始温度相同的条件下,与壁面温度为327 K的工况下5%EG复合石蜡全部熔化的时间对比,壁面温度为332 K及337 K的工况下5%EG复合石蜡全部熔化的时间分别缩短了0.83、1.58倍.  相似文献   

5.
为选择最合适的蓄热材料用于蓄热型热泵热水器,对三水醋酸钠(CH3COONa.3H2O)和石蜡的蓄热性能进行比较。研究采用添加增稠剂和成核剂,防止三水醋酸钠(CH3COONa.3H2O)的过冷与相分离;在石蜡内添加膨胀石墨,复合相变材料的储(放)热时间比石蜡的大幅度减少。在复叠式热泵热水器中,以75%石蜡+25%膨胀石墨作为蓄热材料,其储热时间为152min,放热时间为20min。  相似文献   

6.
采用熔融共混法制备石蜡/膨胀石墨复合相变材料,使用半导体粉末电阻率测试仪对天然鳞片石墨、提纯石墨、可膨胀石墨、石蜡/膨胀石墨复合相变材料在不同压强下的电阻率进行测试。发现所有材料的电阻率都随压强的增加而减小,对导热性能最好的相变材料进行7次重复测试,材料电阻率在0.210~0.535 Ω·cm之间变化,依然小于1 Ω·cm,属于低电阻率材料。根据测试数据计算不同压强情况下相变材料单位体积蓄热量、密度、体积和电阻值。材料的单位体积蓄热量和密度随压强增大而增大,体积和电阻则相反,压强在4~10 MPa之间时物理性能比较稳定,在10 MPa左右时,相变材料电阻值比天然鳞片石墨最大增大884倍、体积1.9倍、密度0.6倍,单位体积蓄热量同比4 MPa时最大增加22.8%,压缩之后单位体积蓄热量提高。说明膨胀石墨/石蜡复合材料属于低电阻率相变材料,应用于沥青路面,能够实现升温和降温的双重效果。  相似文献   

7.
石蜡与石蜡/膨胀石墨复合材料充/放热性能研究   总被引:4,自引:0,他引:4  
利用相变材料的充/放热实验台测试石蜡及石蜡/膨胀石墨(质量比分别为93/7及90/10)复合相变材料的充/放热性能。实验表明纯石蜡在充热过程中自然对流是其主要的换热方式,而放热过程中导热是主要的换热方式。在充/放热过程中,石蜡的充/放热效率都较低。而对于石蜡/膨胀石墨复合相变材料,其导热能力较石蜡有很大提高,但由于添加了膨胀石墨而削弱了对流换热,其换热方式是以导热为主。因此,添加膨胀石墨对充热速率提高不多,而对放热速率有大幅度提高。石蜡/膨胀石墨(93/7)复合材料充热过程所用时间为石蜡的62%,放热过程的时间为石蜡的43%。石蜡/膨胀石墨(90/10)复合材料充热过程所用时间为石蜡的52%,放热过程的时间为石蜡的35%。  相似文献   

8.
石蜡/膨胀石墨复合相变储热材料的研究   总被引:14,自引:0,他引:14  
以膨胀石墨为基体,石蜡为相变储热介质,利用膨胀石墨对石蜡良好的吸附性能,制备出了石蜡/膨胀 石墨复合相变储热材料。由于毛细作用力和表面张力的作用,石蜡在固-液相变时,很难从膨胀石墨的微孔中渗 透出来。实验结果表明,石蜡/膨胀石墨复合相变储热材料没有改变膨胀石墨的结构和石蜡的固-液相变温度, 且其结合了石墨高的导热系数和石蜡大的相变潜热,因而储热密度较高,导热性能好。其相变潜热与对应质量 分率下的石蜡相当,储/放热时间比石蜡明显减少。  相似文献   

9.
根据电子器件散热技术领域对热适应复合材料的性能要求,选取导热系数高且密度低的膨胀石墨作为无机支撑材料,石蜡作为有机相变材料,制备出高导热系数和储热密度的热适应复合相变材料.采用扫描电镜(SEM)、差示扫描量热仪(DSC)、偏光显微镜(POM)和Hot Disk热常数分析仪等多种测试技术,对复合相变材料进行分析研究;通过储/放热实验和1000次热循环实验研究了复合相变材料的传热性能和热稳定性.实验结果说明该复合相变材料具有形状稳定、导热率高、储热密度大等特点,并具有良好的热稳定性和使用寿命.  相似文献   

10.
高杨  何烨  高佳圣  王万权  周艳 《太阳能学报》2022,43(11):406-412
将1.5%石墨烯/石蜡复合相变材料填充到内管形状不同、换热面积相同的套管换热器内,采用数值模拟的方法分析内管形状对石蜡类复合相变材料蓄放热性能的影响。结果表明,异型管能有效提升石蜡复合相变材料的熔化及凝固速率,滴型管外石蜡复合相变材料的熔化速率比椭圆管及圆管分别提高53%、62%,滴型管外石蜡复合相变材料的凝固速率比椭圆管及圆管分别提高6.7%、9.8%。基于场协同原理分析异型管的强化石蜡类复合相变材料的传热机理,由于滴型管能使石蜡类复合相变材料在相变过程中温度场与速度场协同性更高,因此能更有效地提升其相变速率。  相似文献   

11.
《Applied Thermal Engineering》2007,27(8-9):1271-1277
This study aimed determination of proper amount of paraffin (n-docosane) absorbed into expanded graphite (EG) to obtain form-stable composite as phase change material (PCM), examination of the influence of EG addition on the thermal conductivity using transient hot-wire method and investigation of latent heat thermal energy storage (LHTES) characteristics of paraffin such as melting time, melting temperature and latent heat capacity using differential scanning calorimetry (DSC) technique. The paraffin/EG composites with the mass fraction of 2%, 4%, 7%, and 10% EG were prepared by absorbing liquid paraffin into the EG. The composite PCM with mass fraction of 10% EG was considered as form-stable allowing no leakage of melted paraffin during the solid–liquid phase change due to capillary and surface tension forces of EG. Thermal conductivity of the pure paraffin and the composite PCMs including 2, 4, 7 and 10 wt% EG were measured as 0.22, 0.40, 0.52, 0.68 and 0.82 W/m K, respectively. Melting time test showed that the increasing thermal conductivity of paraffin noticeably decreased its melting time. Furthermore, DSC analysis indicated that changes in the melting temperatures of the composite PCMs were not considerable, and their latent heat capacities were approximately equivalent to the values calculated based on the mass ratios of the paraffin in the composites. It was concluded that the composite PCM with the mass fraction of 10% EG was the most promising one for LHTES applications due to its form-stable property, direct usability without a need of extra storage container, high thermal conductivity, good melting temperature and satisfying latent heat storage capacity.  相似文献   

12.
Abstract

This article focuses on the preparation and thermo-physical properties of paraffin/high density polyethylene (HDPE) composites as form-stable solid-liquid phase change material (PCM) for thermal energy storage. In the paraffin/HDPE blend, the paraffin (P) dispersed into the HDPE serves as a latent heat storage material when the HDPE, as a supporting material, prevents the melted paraffin leakage thanks to its structural strength. Therefore, this type composite is form-stable and can be used as a PCM without encapsulation for thermal energy storage. In this study, two paraffins with melting temperatures of 48°C–50°C and 63°C–65°C were used. The mass percentages of paraffins in the composites could go high as 76% without any seepage of the paraffin in melted state. The dispersion of the paraffin into the network of the solid HDPE was investigated using scanning electronic microscope (SEM). The melting temperatures and latent heats of the form-stable P1/HDPE and P2/HDPE composite PCMs were determined as 44.32°C and 61.66°C, and 179.63 and 198.14 Jg?1, by the technique of differential scanning calorimetry (DSC), respectively. Furthermore, the thermal conductivity of the composite PCMs were improved as about 33.3% for the P1/HDPE and 52.3% for the P2/HDPE by introducing the expanded and exfoliated graphite to the samples in the ratio of 3 wt%. The results reveal that the prepared form-stable composite PCMs have great potential for thermal energy storage applications in terms of their satisfactory thermal properties, improved thermal conductivity and cost-efficiency because of no encapsulation for enhancing heat transfer in paraffin.  相似文献   

13.
为探究方腔内相变石蜡的储热性能,基于等效热容法和Boussinesq假设,建立相变石蜡融化储热计算模型,并针对加热方向及约束形式等因素对相变石蜡的储热性能的影响进行研究,并开展相变石蜡融化试验,验证计算模型的正确性。结果表明:相变石蜡融化储热过程是由热传导和自然对流传热综合决定的,其中自然对流传热在相变石蜡融化储热过程中起着极为显著的促进作用;不同加热方向下,相变石蜡表现出截然不同的融化储热效率,其中顶、底、侧边单独加热下的自然对流传热效应依次使储热效率提升了0.01,27.9和13.1倍,即底部热源的储热效率最高;在四面加热下,固相因无约束而下沉至底部,并抑制底部热壁面的自然对流传热效应,此时顶、底、侧热壁面的储热贡献率分别为17.3%,37.3%和22.7%;当固相运动被预埋热电偶等因素限制时,将形成钟型融化前缘,该形态包含了各热壁面单独加热下的融化储热特征,此时顶、底、侧热壁面的储热贡献率分别为19.2%,29.8%和25.5%。  相似文献   

14.
Six novel polymer-based form-stable composite phase change materials (PCMs), which comprise micro-encapsulated paraffin (MEP) as latent heat storage medium and high-density polyethylene (HDPE)/wood flour compound as supporting material, were prepared by blending and compression molding method for potential latent heat thermal energy storage (LHTES) applications. Micro-mist graphite (MMG) was added to improve thermal conductivities. The scanning electron microscope (SEM) images revealed that the form-stable PCMs have homogeneous constitution and most of MEP particles in them were undamaged. Both the shell of MEP and the matrix prevent molten paraffin from leakage. Therefore, the composite PCMs are described as form-stable PCMs. The differential scanning calorimeter (DSC) results showed that the melting and freezing temperatures as well as latent heats of the prepared form-stable PCMs are suitable for potential LHTES applications. Thermal cycling test indicated the form-stable PCMs have good thermal stability although it was subjected to 100 melt–freeze cycles. The thermal conductivity of the form-stable PCM was increased by 17.7% by adding 8.8 wt% MMG. The results of mechanical property test indicated that the addition of MMG has no negative influence on the mechanical properties of form-stable composite PCMs. Taking one with another, these novel form-stable PCMs have the potential for LHTES applications in terms of their proper phase change temperatures, improved thermal conductivities, outstanding leak tightness of molten paraffin and good mechanical properties.  相似文献   

15.
A composite based on paraffin, styrene–butadiene–styrene (SBS) triblock copolymer and exfoliated graphite (EG) is prepared. In this composite, paraffin undergoes solid–liquid phase change in the SBS network, and there is no leakage of it even in the state of melting. The composite exhibits high thermal conductivity and nearly 80% of the latent heat of fusion per unit mass of the paraffin.  相似文献   

16.
Thermal energy storage (TES) using phase change materials (PCMs) has recently received considerable attention in the literature, due to its high storage capacity and isothermal behaviour during the storage (melting or charging) and removal (discharging or solidification). In this study, a novel modification on a tube-in-shell-type storage geometry is suggested. In the proposed geometry, the outer surface of the shell is inclined and it is the objective of this study to determine the optimum range for the inclination angle of the shell surface. Paraffin with a melting temperature of 58.06°C, which is supplied by the Merck Company, is used as the PCM. The PCM is stored in the vertical annular space between an inner tube through which the heat transfer fluid (HTF), hot water, is flowing and a concentrically placed outer shell. At first, the thermophysical properties of this paraffin are determined through the differential scanning calorimeter (DSC) analysis. Temporal behaviour of the PCM undergoing a non-isothermal solid–liquid phase change during its melting or charging by the HTF are determined for different values of the inlet temperature and the mass flow rate of the HTF. The new geometry is shown to respond well with the melting characteristics of the PCM and to enhance heat transfer inside the PCM for a specific range of the shell inclination angle. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号