首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 441 毫秒
1.
The development of hydrocarbon polymer electrolyte membranes with high proton conductivities and good stability as alternatives to perfluorosulfonic acid membranes is an ongoing research effort. A facile and effective thermal crosslinking method was carried out on the blended sulfonated poly (ether ether ketone)/poly (aryl ether sulfone) (SPEEK/SPAES) system. Two SPEEK polymers with ion exchange capacities (IECs) of 1.6 and 2.0 mmol g?1 and one SPAES polymer (2.0 mmol g?1) were selected to create different blends. The effect of thermal crosslinking on the fundamental properties of the membranes, especially their physicochemical stability and electrochemical performance, were investigated in detail. The homogeneous and flexible thermally-crosslinked SPEEK/SPAES membranes displayed excellent mechanical toughness (27–46 Mpa), suitable water uptake (<60%), high dimensional stability (swelling ratio < 15%) and large proton conductivity (>120 mS cm?1) at 80 °C. The thermal crosslinking membranes also show significantly enhanced hydrolytic (<2.5%) and oxidative stability (<2%). Fuel cell with t-SPEEK/SPAES (1:2:2) membrane achieves a power density of 665 mW cm?2 at 80 °C.  相似文献   

2.
The performance of the single-step and sequential-steps catalytic CO2-hydrogenation to DiMethyl Ether (DME) was systematically analyzed. CuO–ZnO model-catalysts for CO2-hydrogenation to methanol were synthesized via different methods namely co-precipitation, sequential precipitation and precipitation-impregnation of the precursors. Moreover, co-precipitation and co-impregnation methods were applied to establish bifunctional catalytic structures composed of CuO–ZnO over HZSM-5 for direct CO2-hydrogenation to DME in a single-step.In addition, the performance of the catalytic bed made of sequential layered-arrangements of the CuO–ZnO and ZSM-5 catalysts as well as random mixture of these catalysts were also analyzed both experimentally as well as through the performed model-based study. It was observed that a faster conversion of the generated methanol to DME, secured by establishing a closer distance between the catalytic materials responsible for CO2-hydrogenation to methanol and methanol-dehydration to DME, will improve the overall selective CO2-conversion. This was demonstrated by obtaining the highest combined yield of methanol and DME products at the reactor outlet in those cases. Similarly, a bifunctional catalyst, for instance synthesized by co-impregnation method (made of 1:2 CuO–ZnO:ZSM-5), showed one of the most promising DME selectivity of 65% and DME yield of 12.5% under the highest reaction temperature of 260 °C, lowest tested GHSV of 200 h?1, and maximum operating pressure 20 bar for the lowest H2/CO2 ratio of 3.  相似文献   

3.
A type of sulfonated covalent organic framework nanosheets (TpPa-SO3H) was synthesized via interfacial polymerization and incorporated into sulfonated poly (ether ether ketone) (SPEEK) matrix to prepare proton exchange membranes (PEMs). The densely and orderly arranged sulfonic acid groups in the rigid skeleton of the TpPa-SO3H nanosheets, together with their high-aspect-ratio and well-defined porous structure provide proton-conducting highways in the membrane. The doping of TpPa-SO3H nanosheets led to an increased ion exchange capacity up to 2.34 mmol g?1 but a 2-folds reduced swelling ratio, remarkably mitigating the trade-off between high IEC and excessive swelling ratio. Based on the high IEC and orderly arranged proton-conducting sites, the SPEEK/TpPa–SO3H–5 membrane exhibited the maximum proton conductivity of 0.346 S cm?1 at 80 °C, 1.91-folds higher than the pristine SPEEK membrane. The mechanical strength of the composite membrane was also improved by 2.05-folds–74.5 MPa. The single H2/O2 fuel cell using the SPEEK/TpPa–SO3H–5 membrane presented favorable performance with an open voltage of 1.01 V and a power density of 86.54 mW cm?2.  相似文献   

4.
The inefficient extracellular electron transfer (EET) is detrimental to power generation and waste degradation in microbial fuel cells (MFCs). Herein, we report a self-supporting anode for MFCs prepared by graphitization of steamed bread slices followed by in-situ polymerization to fabricate polyaniline@N-doped macroporous carbon foam (PANI@NMCF). The natural nitrogen-containing wheat flour was fermented and carbonized to form NMCF with a high specific surface area of 818.1 m2 g?1. After the NMCF surface modified by PANI, the enhanced hydrophilicity and conductivity of the PANI@NMCF anode would facilitate microbial adhesion, biofilm formation, and electron transfer. The surface improvements enhance the EET process for high-performance MFCs, including a short startup time of 21.7 h, high maximum output power density of 1160 ± 17 mW m?2, and decolourisation efficiency of 88.6 ± 1.2% for 36 h. The chemical oxygen demand removal efficiency was about 84.6 ± 1.1% at end of the operating cycles. This work provides a good foundation for our future development of carbon-based electrode materials for energy conversion and storage devices.  相似文献   

5.
A sulfonated poly(ether ether ketone) containing hydroxyl groups (HO-SPEEK) has been synthesized for investigation as the ionomer in cathode of direct methanol fuel cells. Na salt-formed HO-SPEEK shows excellent solubility in some aqueous solutions of monohydric alcohol and can be successfully self-cross-linked in-situ during the hot-pressing process of membrane-electrode assembly (MEA) fabrication. The resulted cross-linked HO-SPEEK displays improved stability and mechanical strength. MEA incorporating the HO-SPEEK as both membrane and ionomer shows excellent peak power density of 29.0 mW cm−2 at 25 °C with 4 M methanol, which is comparable to the Nafion reference MEA (31.8 mW cm−2) and 2.9-fold higher than that of the MEA prepared from catalyst ink that contained dimethyl sulfoxide (10.3 mW cm−2). Thanks to the avoidance of high-boiling point solvent, the resulted HO-SPEEK-based cathode is loosened with many large pores for reactant gas and product transportation. These results demonstrate that water-alcohol dispersible and cross-linkable sulfonated hydrocarbons hold technological promise as ionomer for electrode.  相似文献   

6.
Nanocomposite membranes based on sulfonated poly (ether ether ketone) (SPEEK) and sulfonated core-shell TiO2 nanoparticles were prepared. TiO2 nanoparticles were sulfonated by redox polymerization method by using sodium styrene sulfonate (SSA) and 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) monomers. The resultant hybrid nanoparticles (PAMPS-gTiO2 and PSSA-g-TiO2) were introduced to SPEEK with a sulfonation degree of 68%. Grafting of sulfonated polymers onto TiO2 nanoparticles enhanced the content of proton transport sites in the membrane, leading to an increase in proton conductivity and power density. Besides, the mechanical and dimensional stabilities of the nanocomposite membranes were also improved compared with pure SPEEK membrane. The maximum power density for membranes containing 7.5 wt% of PAMPS-gTiO2 and PSSA-g-TiO2 nanoparticles at 80 °C obtained 283 mW cm−2 and 245 mW cm−2, respectively.  相似文献   

7.
This study assessed the feasibility of vanadium pentoxide (V2O5) as a novel cathode catalyst material in air-cathode single chamber microbial fuel cells (SCMFCs). The V2O5 nanorod catalyst was synthesized using a hydrothermal method. MFCs with different cathode catalyst loadings were studied. Cyclic voltammetry (CV) was used to examine the electrochemical behavior of the catalysts in the MFCs. The V2O5 cathode catalyst constructed with a double loading MFC exhibited the highest maximum power density of 1073 ± 18 mW m−2 (OCP; 691±4 mV) compared with 447 ± 12 mW m−2 (OCP; 594 ± 5 mV) and 936 ± 15 mW m−2 (OCP; 647±5 mV) for the single loading MFC and triple loading MFC, respectively. The power density of MFC with double loaded V2O5 is comparable to the traditional Pt/C cathode (2067 ± 25 mW m−2, OCP; 821 ± 4 mV), which covers up to 55% of the performance of Pt/C. This finding highlights the potential of the V2O5 cathode as an inexpensive catalyst material for MFCs that may have commercial applications.  相似文献   

8.
Custom-made proton exchange membranes (PEM) are synthesized by incorporating sulfonated poly(ether ether ketone) (SPEEK) in poly(ether sulfone) (PES) for electricity generation in microbial fuel cells (MFCs). The composite PES/SPEEK membranes at various composition of SPEEK are prepared by the phase inversion method. The membranes are characterized by measuring roughness, proton conductivity, oxygen diffusion, water crossover and electrochemical impedance. The conductivity of hydrophobic PES membrane increases when a small amount (3–5%) of hydrophilic SPEEK is added. The electrochemical impedance spectra shows that the conductivity and capacitance of PES/SPEEK composite membranes during MFC operation are reduced from 6.15 × 10−7 to 6.93 × 10−5 (3197 Ω–162 Ω) and from 3.00 × 10−7 to 1.56 × 10−3 F, respectively when 5% of SPEEK added into PES membrane. The PES/SPEEK 5% membrane has the highest performance compared to other membranes with a maximum power density of 170 mW m−2 at the maximum current density of 340 mA m−2. However, the interfacial reaction between the membrane and the cathode with Pt catalyst indicates moderate reaction efficiency compared to other membranes. The COD removal efficiency of MFCs with composite membrane PES/SPEEK 5% is nearly 26-fold and 2-fold higher than that of MFCs with Nafion 112 and Nafion 117 membranes respectively. The results suggest that the PES/SPEEK composite membrane is a promising alternative to the costly perfluorosulfonate membranes presently used as separators in MFC systems.  相似文献   

9.
This study presents a novel approach for synthesizing C–ZnO/CdS graded nanorods derived from metal–organic frameworks (MOFs) that can be applied as a catalyst for photocatalytic hydrogen evolution from pure water. Porous C-doped ZnO was prepared by a self-template method using imidazole-like metal–organic backbone (ZIF-L) as a precursor through a two-step calcination method. CdS nanoparticles were deposited on ZIF-L surface by chemical deposition. The two-step calcination method introduced elemental C, and the unique architecture of ZIF-L played an essential role in forming the hierarchical structure of the porous ZnO nanorods. Compared with other ZnO/CdS catalysts, the C-doped ZnO/CdS graded nanorods exhibited remarkable photocatalytic activity for hydrogen production. The highest hydrogen production rate of 20.25 mmol g?1 h?1 with an apparent quantum yield (AQY) of 24.7% at 365 nm obtained over C–ZnO/CdS with Pt as co-catalyst, which was 24.4 and 65.3 times higher than that over CdS (0.83 mmol g?1 h?1) and ZnO (0.31 mmol g?1 h?1), respectively. This outcome was attributed to (i) the formation of Z-scheme heterojunction that significantly promoted the separation and migration of photogenerated electron–hole pairs; (ii) C doping that reduced the bandgap of ZnO and broadened its spectral response range; and (iii) the ordered arrangement of porous nanorods that effectively reduced the recombination rate of the electron–hole pairs.  相似文献   

10.
A novel hard-template method to fabricate tofu-gel based N self-doped porous carbon (NC-X) as excellent oxygen reduction reaction (ORR) electrocatalyst, in which CaCO3 is in-situ formed from flocculant and then served as hard-template. The as-prepared NC-3 delivers a high specific surface area (609.10 m2 g−1), pore volume (0.68 cm3 g−1) and nitrogen content (7.20 at. %). Reasonably, NC-3 possesses more positive on-set potential (0.132 V vs. Ag/AgCl) and half-wave potential (−0.041 V vs. Ag/AgCl). Furthermore, the output voltage and maximum power density of NC-3 coated as cathode in microbial fuel cell (MFC) are enhanced to 533.65 ± 12.09 mV and 471.82 ± 15.39 mW m−2, respectively. Noted that NC-3 (2.15 × 10−3 $ g−1) also shows nice long-term stability and anti-poisoning to methanol, and is nearly 100,000 times cheaper than commercial Pt/C (20 wt %, 220.04 $ g−1). Therefore, NC-3 should be a very promising ORR catalyst in the application of MFC.  相似文献   

11.
The poly(ether ether ketone) (PEEK) was prepared as organic matrix. ZIF-8 and GO/ZIF-8 were used as fillers. A series of novel new anion exchange membranes (AEMs) were fabricated with imidazole functionalized PEEK and GO/ZIF-8. The structure of ZIF-8, GO/ZIF-8 and polymers are verified by 1H NMR, FT-IR and SEM. This series of hybrid membranes showed good thermal stability, mechanical properties and alkaline stability. The ionic conductivities of hybrid membranes are in the range of 39.38 mS cm?1–43.64 mS cm?1 at 30 °C, 100% RH and 59.21 mS cm?1–86.87 mS cm?1 at 80 °C, 100% RH, respectively. Im-PEEK/GO/ZIF-8-1% which means the mass percent of GO/ZIF-8 compound in Im-PEEK polymers is 1%, showed the higher ionic conductivity of 86.87 mS cm?1 at 80 °C and tensile strength (38.21 MPa) than that of pure membrane (59.21 mS cm?1 at 80 °C and 19.47 MPa). After alkaline treatment (in 2 M NaOH solution at 60 °C for 400 h), the ionic conductivity of Im-PEEK/GO/ZIF-8-1% could also maintain 92.01% of the original ionic conductivity. The results show that hybrid membranes possess the ability to coordinate trade-off effect between ionic conductivity and alkaline stability of anion exchange membranes. The excellent performances make this series of hybrid membranes become good candidate for application as AEMs in fuel cells.  相似文献   

12.
It was reported that the existence of N-spirocyclic quaternary ammonium (QA) cation could improve alkaline stability of anion exchange membrane materials (AEM). Therefore, the cyclo-quaternization reaction with pyrrolidine (Pyr) and piperidine (Pip) was carried out to prepare quaternized poly (ether ether ketone)s bearing five-membered and six-membered N-spirocyclic quaternary ammonium (QA) groups in the phenyl side chains (QPEEK-spiro-pyr and QPEEK-spiro-pip), respectively. From the transmission electron microscope, the hydrophilic-hydrophobic phase-separated morphology was formed in QPEEK-spiro membranes after incorporating N-spirocyclic QA cations and bulky spacer simultaneously in the phenyl side chain. The effect of N-spirocyclic QA groups on performance of resulted AEMs was then studied in detail. The anion conductivities of QPEEK-spiro-pyr and QPEEK-spiro-pip in OH? form at 80 °C were 49.6 and 30.9 S cm?1, respectively. The remaining proportions of hydroxide conductivity for QPEEK-spiro-pyr and QPEEK-spiro-pip membranes after immersing in 1 M NaOH at 60 °C were 81.0% and 74.7%, respectively, which were higher than that of 62.3% for QPEEK-TMA containing conventional QA groups in the phenyl side chain. Fuel cell assembled with QPEEK-spiro-pyr achieves a peak power density of 90 mW cm?2. These results indicate the strategy of simultaneously introducing N-spirocyclic QA cations and bulky spacers can improve the performance of AEM to a certain extent. There are some other factors that influence the alkaline stability of the prepared AEMs, such as the existence of ether bonds in the main chain. However, this work still provides a valuable reference towards the molecular design of AEMs with improved performance.  相似文献   

13.
Reduced graphene oxide (RGO) is used in many energy applications, especially in Polymer Electrolyte Membrane (PEM) fuel cells, as carbon sourced catalyst support materials. In this study, thermally (T-RGO) and chemically (C-RGO) reduced GO support materials were synthesized for utilization in PEM fuel cells. Pt catalysts were synthesized using supercritical carbon dioxide (SCCO2) deposition technique over synthesized support materials. Physical (BET, SEM-EDX, FTIR, RAMAN, XRD, TEM, ICP-MS and optical tensiometer) and electrochemical (CV, PEM fuel cell test) characterizations of synthesized support materials and corresponding Pt catalysts were performed. The differences between the structures of thermally and chemically reduced graphene oxide supports and their Pt catalysts were investigated. The ECSA values of the Pt/T-RGO and Pt/C-RGO catalysts are 19.86 m2 g?1 and 6.31 m2 g?1, respectively. The current and power density values of the Pt/T-RGO and Pt/C-RGO catalysts at 0.6 V are 84 mA cm?2, 80 mA cm?2 and 50 mW cm?2, 45 mW cm?2, respectively. Pt/T-RGO and Pt/C-RGO catalysts showed similar trend in PEMFC environment.  相似文献   

14.
Non-noble metal supported catalysts such as 20NiO/MgO, 20CuO/MgO and 20ZnO/MgO were catalyzed the gasification of oil palm frond biomass in supercritical water for hydrogen production. All the catalysts are found to be pure with no impurities present. The specific surface area of these catalysts can be arranged in the order of 20NiO/MgO (30.1 m2 g–1) > 20CuO/MgO (16.8 m2 g–1) > 20ZnO/MgO (13.1 m2 g–1). Although catalysts with larger specific surface area are beneficial for catalytic reactions, in this study, the largest specific surface area did not lead to the highest catalytic performance. It is found that the 20ZnO/MgO catalyst (118.1 mmol ml?1) shown the highest H2 yield than the 20CuO/MgO (81.1 mmol ml?1) and 20NiO/MgO (72.7 mmol ml?1) catalysts. In addition, these supported catalysts also shown higher H2 selectivity with reached 83.8%, 84.9% and 87.6% for 20CuO/MgO, 20NiO/MgO and 20ZnO/MgO catalysts. Other factors such as dispersion, basicity and bond strength play more important roles in supercritical water gasification of biomass to produce hydrogen.  相似文献   

15.
Proton exchange membrane materials based on sulfonated poly ether ether ketone (SPEEK) with Methyl Cellulose (MC) are developed by solution cast technique and exposed to UV radiation with Bezoin Ethyl Ether (BEE) as photoinitiator. The addition of MC into SPEEK polymer enhances the conductivity up to 8.7 × 10?3 Scm?1 at 30 °C temperature and 80% relative humidity. This new crosslinked hybrid membrane shows good prospect for the use as proton exchange membrane in fuel cell.  相似文献   

16.
A novel proton exchange membrane composed of the sulfonated poly(ether ether ketone ketone) (SPEEKK) with butane-1,4-diylbis(oxy) spacers in the backbone and sulfopropyloxy pendants is synthesized through the Friedel-Crafts polyacylation of 1,4-diphenoxybutane (DPB), diethyl-3,3’-([1,1′-biphenyl]-2,2′-diylbis(oxy))bis(propane-1-sulfonate) (SBP–OEt), and terephthaloyl chloride (TPC) under mild conditions. The monomer DPB can introduce the flexible aliphatic butane-1,4-diylbis(oxy) spacers into the polymeric backbone and thus promote the formation of proton transport channels. The as-synthesized SPEEKK exhibits a high proton conductivity of 152.5 mS cm?1 at 95 °C and 90% relative humidity (RH), a moderate water uptake of 53.2% at 100 °C and also a high ion exchange capacity of 1.74 mmol g?1. These characteristics are attributed to the enhanced nanophase separation induced by the flexible butane-1,4-diylbis(oxy) spacers and hydrophilic sulfopropyloxy sidechains.  相似文献   

17.
The electrochemical performance of membrane electrode assemblies (MEAs) with ultra-low platinum load (0.02 mgPt cm?2) and different compositions of Nafion/C in the catalytic layer have been investigated. The electrodes were fabricated depositing the catalytic ink, prepared with commercial catalyst (HiSPEC 2000), onto the gas diffusion layers by wet powder spraying. The MEAs were electrochemically tested using current-voltage curves and electrochemical impedance spectroscopy measurements. The experiments were carried out at 70 °C in H2/O2 and H2/air as reactant gases at 1 and 2 bar pressure and 100% of relative humidity. For all MEAs tested, power density increases when the gasses pressure is increased from 1 to 2 bar. On the other hand, power density also increased when oxygen is used instead of air as oxidant gas in cathode. The lower power density (34 mW cm?2) and power per Pt loading (0.86 kW gPt?1) corresponds to the MEA prepared without Nafion in anode and cathode catalytic layers working with hydrogen and air at 1 bar pressure as reactants gas. The MEA with 30% wt Nafion/C reached the highest power density (422 mW cm?2) and power per Pt loading (10.60 kW gPt?1) using hydrogen and oxygen at 2 bar pressure. Finally, electrode surface microstructure and cross sections of MEAs were analyzed by Scanning Electron Microscopy (SEM). Examination of the electrodes, revealed that the most uniform ionomer network surface corresponds to the electrode with 40 wt% Nafion/C, and MEA ionomer-free catalytic layer shows delamination, it leads to low electrochemical performance.  相似文献   

18.
A novel anion-conducting ionomer binder, quaternized polybenzimidazoles (QPBIs) with 4-methyl-4-glycidylmorpholin-4-ium chloride (MGMC) in the main-chain and/or in the side group were synthesized for solid alkaline fuel cells (SAFCs). Crosslinking of the polybenzimidazole derivatives using a crosslinker containing epoxy groups formed ionomer binder in electrodes, and the crosslinked QPBIs showed better mechanical stability than non-crosslinked QPBIs. During the electrode drying process, on-site crosslinking was introduced to form thermally crosslinked ionomer binder in catalyst layers. A bench-scale SAFC with the crosslinked QPBI (CQPBI) containing 35 wt% of ionomer binder showed higher peak power density (35.3 mW cm−2) than the SAFC with 2,2′(m-phenylene)-5,5′bibenzimidazole (m-PBI) with 35 wt% of ionomer binder (20.9 mW cm−2). The membrane-electrode assembly (MEA) with CQPBI (35 wt% binder) showed two times higher chemical stability than that with m-PBI (35 wt% of ionomer binder) in load cell tests.  相似文献   

19.
Two steps of dimethyl ether (DME) synthesis from CO2 and H2 in a batch reactor were studied, including CO2 hydrogenation to methanol through ethanol-assisted method and methanol dehydration to DME. Additions of 10 wt% ZrO2, Al2O3 and ZrO2–Al2O3 into Cu/ZnO were investigated in low-temperature methanol synthesis using ethanol as catalytic solvent. Suitable zeolite (ZSM-5 and ferrierite) for methanol dehydration was also determined. Ethanol-assisted method offered high methanol yield and Cu/ZnO/ZrO2 catalyst provided the highest CO2 conversion (82.1%) and methanol yield (60.8%) at 150 °C and 50 bar since ZrO2 decreased CuO crystallite sizes and increased surface areas of the catalyst. For methanol dehydration to DME, zeolite's strong acidity related to DME formation. The Cu/ZnO/ZrO2 - Ferrierite provided the highest DME productivity at 0.44 mmolDME/gcat. In addition, DME synthesis from CO2 and H2 through ethanol-assisted methanol synthesis and methanol dehydration can be a potential method to simultaneously produce DME and ethylene. Under the operating conditions, ethylene was produced as a valued by-product of 5.65 mmolEthylene/gcat from dehydration of ethanol. In this study, rather high methanol yield was obtained from ethanol-assisted method. However, DME yield can be further improved by increasing synthesis temperature.  相似文献   

20.
Sulfonated branched polymer membranes have been gaining immense attention as the separator in energy‐related applications especially in fuel cells and flow batteries. Utilization of this branched polymer membranes in direct methanol fuel cell (DMFC) is limited because of large free volume and high methanol permeation. In the present work, sulfonated fullerene is used to improve the methanol barrier property of the highly branched sulfonated poly(ether ether ketone sulfone)s membrane without sacrificing its high proton conductivity. The existence of sulfonated fullerene with larger size and the usage of small quantity in the branched polymer matrix effectively prevent the methanol transportation channel across the membrane. The composite membrane with an optimized loading of sulfonated fullerene displays the highest proton conductivity of 0.332 S cm?1 at 80°C. Radical scavenging property of the fullerene improves the oxidative stability of the composite membrane. Composite membrane exhibits the peak power density of 74.38 mW cm?2 at 60°C, which is 30% larger than the commercial Nafion 212 membrane (51.78 mW cm?2) at the same condition. From these results, it clearly depicts that sulfonated fullerene‐incorporated branched polymer electrolyte membrane emerges as a promising candidate for DMFC applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号