首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic reaction characteristics of the hydrogen and oxygen mixture in the catalytic micro-combustor were detected by thermocouple, infrared thermal imager and OH-PLIF. The equivalence ratio of transition stage from coupling reaction (coupled homogeneous-heterogeneous combustion) to pure catalytic reaction (heterogeneous combustion) was obtained. The three-dimensional pure catalytic reaction model with detailed catalytic reaction mechanism was established in a rectangular catalytic micro-combustor. The simulation model was validated with experimental data. The effects of the intermediate and final products from gas-phase reactions on the pure catalytic reaction were discussed as well as the effects of gas-phase reactions on the catalytic reaction in the process of coupling reactions were studied. The intermediate product OH radical can improve the hydrogen conversion of the surface reaction, and the effect of O radical is not obvious. The final product H2O has an inhibitory effect on the surface reaction. Since the mass fraction of H2O is much higher than other gas-phase reaction products, the dominant effect of the gas-phase reaction on the catalytic reaction is suppression. In the coupling reactions, the fuel consumed by the gas-phase reaction weakened the catalytic reaction.  相似文献   

2.
The pyrolysis and combustion mechanism of the hydrocarbon fuel has important scientific and practical significance. However, it is difficult to detect the whole intermediates and products using traditional methods, which brings trouble to the analysis of the reaction process. In this paper, the microscopic reaction mechanism and the main products of n-eicosane (C20H42) were simulated based on the reactive force field molecular dynamics (ReaxFF-MD). The effects of temperature (2000–3500 K) and oxygen on the initial decomposition, the distribution of main products, and the reactive pathways of C20H42 fuel were studied to determine its reaction mechanism. The initial decomposition of C20H42 was mainly initiated by small alkyl radicals in pyrolysis, and by the oxygen-containing radicals in combustion. The participation of oxygen had a greater effect on accelerating the decomposition reaction. The reactions involving oxygen of C20H42 initial decomposition accounted for 87.5% of the total reactions at 2000 K. Moreover, the detailed distribution and formation pathways of the main products of H2, C2H4, CH4, H2O, CO, and CO2 were depicted to construct the overall reaction mechanism of C20H42. •H radical formed from the composition of C2H4 was exactly consistent with the •H radical consumed by the generation of CH4 and H2 in the pyrolysis stage. The feasibility of the simulation method was verified by the result of thermal analysis. The results are helpful for further research on the reaction mechanism of hydrocarbon fuels.  相似文献   

3.
4.
A new, detailed kinetic model was developed for the homogeneous decomposition of HI–H2O solutions in vapor phase in the sulfur–iodine cycle. The kinetics of the process was represented by a reaction mechanism involving 32 reactions and 11 species. Comparisons between the kinetic calculations and experimental data showed that this model correctly predicted the hydrogen yield at the 500 °C–1000 °C temperature range under 1 atm. The effects of temperature, reaction time, and HI/H2O ratio on HI decomposition and hydrogen sensitivity analysis were investigated in the modeling process. The model predicted that the effect of the addition of H2O changed from inhibiting the decomposition ratio to promoting it with increasing temperature. The sensitivity analysis showed that elementary reactions (1) HI + HI = H2+I2, (4) HI + H = H2 + I, (5) HI + I = H + I2, and (8) HI + OH = H2O + I played important roles in hydrogen production. The reaction path of HI decomposition with H2O was constructed based on detailed kinetic modeling and sensitivity analysis results.  相似文献   

5.
6.
In recent years, supercritical water as a green reaction medium to convert organic matter to produce hydrogen has attracted significant attention. At present, the mechanism of the supercritical water partial oxidation (SCWPO) process is still unknown when complete gasification is achieved. In this paper, a detailed mechanism for SCWPO of ethanol was proposed by establishing a novel kinetic model with a wide reaction temperature range. This model described the formation and consumption of gas products (H2, CO, CH4, and CO2) from ethanol by partial oxidation in the supercritical water environment through nine reactions. The results showed that the dehydrogenation and pyrolysis of ethanol were the main ways to generate H2 in the early stage, and the water-gas shift reaction had the most significant impact on hydrogen production in the later stage. The hydrogenation reaction of the intermediate product ethane was a key step for complete conversion into combustible gas products. The steam reforming reaction of a large amount of CH4 produced by ethanol and intermediate product will become the rate-determining step for hydrogen production.  相似文献   

7.
Flame structure and NO emission characteristics in counterflow diffusion flame of blended fuel of H2/CO2/Ar have been numerically simulated with detailed chemistry. The combination of H2, CO2 and Ar as fuel is selected to clearly display the contribution of hydrocarbon products to flame structure and NO emission characteristics due to the breakdown of CO2. A radiative heat loss term is involved to correctly describe the flame dynamics especially at low strain rates. The detailed chemistry adopts the reaction mechanism of GRI 2.11, which consists of 49 species and 279 elementary reactions. All mechanisms including thermal, NO2, N2O and Fenimore are taken into account to separately evaluate the effects of CO2 addition on NO emission characteristics. The increase of added CO2 quantity causes flame temperature to fall since at high strain rates a diluent effect is prevailing and at low strain rates the breakdown of CO2 produces relatively populous hydrocarbon products and thus the existence of hydrocarbon products inhibits chain branching. It is also found that the contribution of NO production by N2O and NO2 mechanisms are negligible and that thermal mechanism is concentrated on only the reaction zone. As strain rate and CO2 quantity increase, NO production is remarkably augmented. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Hydrogen production through fuel reforming can be used to improve IC (internal combustion) engines combustion characteristics and to lower vehicle emissions. In this study, a computational fluid dynamics (CFD) model based on a detailed kinetic mechanism was developed for exhaust gas reforming of biogas to synthetic gas (H2 and CO). In agreement with experimental data, the reactor's physical and chemical performance was investigated at various O2/CH4 ratios and gas hourly space velocities (GHSV). The numerical results imply that methane reforming reactions are strongly sensitive to O2/CH4 ratio and engine exhaust gas temperature. It was also found that increasing GHSV results in lower hydrogen yield; since dry and steam reforming reactions are relatively slow and are both dependent on the flow residence time. Furthermore, the hot spot effect, which is associated to oxidation reforming reactions, was investigated for catalyst activity and durability.  相似文献   

9.
The chemistry of nitrogen species and the formation of NOx in hydrogen combustion are analyzed here on the basis of a large set of experimental measurements.The detailed kinetic scheme of H2/O2 combustion was updated and upgraded using new kinetic and thermodynamic measurements, and was validated over a wide range of temperatures, pressures and equivalence ratios. The mechanism's performance at high pressures was greatly improved in particular by adopting higher rate parameters for the H+OH+M=H2O reaction.The NOx sub-mechanism was further validated and updated. The kinetic parameters of the NO2+H2=HONO+H and N2H2+NO=N2O+NH2 reactions were updated in order to improve model predictions in specific conditions.Sensitivity analyses were carried out to determine which reactions dominate the H2/O2 and H2/NOx systems at particular operating conditions.Good overall agreement was observed between the model and the wide range of experiments simulated.  相似文献   

10.
The effects of dimethyl ether addition to fuel on the formation of polycyclic aromatic hydrocarbons and soot were investigated experimentally and numerically in a laminar coflow ethylene diffusion flame at atmospheric pressure. The relative concentrations of polycyclic aromatic hydrocarbon species and the relative soot volume fractions were measured using planar laser-induced fluorescence and two-dimensional laser-induced incandescence techniques, respectively. Experiments were conducted over the entire range of dimethyl ether addition from pure ethylene to pure dimethyl ether in the fuel stream. The total carbon mass flow rate was maintained constant when the fraction of DME in the fuel stream was varied. Numerical calculations of nine diffusion flames of different dimethyl ether fractions in the fuel stream were performed using a detailed reaction mechanism consisting of 151 species and 785 reactions and a sectional soot model including soot radiation, inception of nascent soot particle due to collision of two pyrene molecules, heterogeneous surface growth and oxidation following the hydrogen abstraction acetylene addition mechanism, soot particle coagulation, and PAH surface condensation. The addition of a relatively small amount of dimethyl ether to ethylene was found experimentally to increase the concentrations of both polycyclic aromatic hydrocarbons and soot. The synergistic effect on polycyclic aromatic hydrocarbons persists over a wider range of dimethyl ether addition. The numerical results reproduce the synergistic effects of dimethyl ether addition to ethylene on both polycyclic aromatic hydrocarbons and soot, though the magnitude of soot volume fraction overshoot and the range of dimethyl ether addition associated with the synergistic effect of soot are less than those observed in the experiment. The synergistic effects of dimethyl ether addition to ethylene on many hydrocarbon species, including polycyclic aromatic ones, and soot can be fundamentally traced to the enhanced methyl concentration with the addition of dimethyl ether to ethylene. Contrary to previous findings, the pathways responsible for the synergistic effects of benzene, polycyclic aromatic hydrocarbons, and soot in the ethylene/dimethyl ether system are found to be primarily due to the cyclization of l-C6H6 and n-C6H7 and to a much lesser degree due to the interaction between C2 and C4 species for benzene formation, rather than the propargyl self-combination reaction route, though it is indeed the most important reaction for the formation of benzene.  相似文献   

11.
Many applications use hydrogen addition and high-pressure fuel injection technology to improve combustion performance. In this study, spray atomization and combustion characteristics of a diesel fuel jet, under the injection pressure of 350 MPa, injecting into a constant volume combustion vessel filled with air-hydrogen mixture at the diesel engine relevant condition are investigated by simulation method. A simplified mechanism of the n-heptane (C7H16) oxidation chemistry mechanism consisting of 26 reactions and 25 species integrated with the Kéromnès-2013 hydrogen combustion mechanism and EDC combustion model are utilized to predict the diesel fuel spray auto-ignition and combustion. The ambient gas is the mixture of air and hydrogen range in volume fraction from 0% to 10%. The ambient temperature and pressure is set to 1000 K and 3.5 MPa, respectively. The results indicate that as the hydrogen volume fraction is 2%, the minimum overall droplet SMD (Sauter Mean Diameter) is approximately 0.95 μm, which is obviously smaller than that of the case with the conventional high injection pressure. In cases that H2 v/v% larger than 4%, the maximum gaseous temperature increased significantly up to 2700 K. There are two peaks in the temperature growth rate curves as the hydrogen fraction of 8% and 10%. The high temperature at the outer edge of the spray is clearly seen due to its high value when the hydrogen fraction is larger than 4%. The hot reaction layer is the main location of CO formation. The H, OH radicals are formed at the edge of the spray where the temperature is high. The hydrogen species obviously promotes the oxidation and combustion of diesel fuel.  相似文献   

12.
The reaction of Al and H2O is a promising method for the renewable production of H2 (an environmentally friendly fuel whose combustion produces only water), because it does not directly include fossil fuels conversion. This reaction was studied at extreme pH values as low as 1 and as high as 13.5 with HCl, H2SO4, and NaOH, and at low hydrothermal temperatures of 40-100 °C. Factors such as pH, temperature, and solution medium influenced H2 production, which was considerably greater at higher temperatures and more extreme pH (acidic or alkaline). Alkaline conditions consistently favored more rapid H2 production than acidic conditions. Under the most extreme conditions, the activation energy was ∼60 kJ mol−1 for both acidic and alkaline reactions. A model predicting H2 production in acidic reactions was derived from the reaction mechanism and kinetics. The model yielded a good fit to on-site measurements at the Tamagawa and Zao hot springs in northeast Japan. This study would aid the development of industrial H2 production systems using natural acidic hot springs or alkaline industrial wastewater.  相似文献   

13.
Solid oxide fuel cells (SOFCs) can be operated in a reversed mode as electrolyzer cells for electrolysis of H2O and CO2. In this paper, a 2D thermal model is developed to study the heat/mass transfer and chemical/electrochemical reactions in a solid oxide electrolyzer cell (SOEC) for H2O/CO2 co-electrolysis. The model is based on 3 sub-models: a computational fluid dynamics (CFD) model describing the fluid flow and heat/mass transfer; an electrochemical model relating the current density and operating potential; and a chemical model describing the reversible water gas shift reaction (WGSR) and reversible methanation reaction. It is found that reversible methanation and reforming reactions are not favored in H2O/CO2 co-electrolysis. For comparison, the reversible WGSR can significantly influence the co-electrolysis behavior. The effects of inlet temperature and inlet gas composition on H2O/CO2 co-electrolysis are simulated and discussed.  相似文献   

14.
In this study, to reveal the thermodynamic reaction mechanism and the conversion characteristics of material and energy for the steam reforming of multi-component materials, a chemical equilibrium model was constructed, and the reaction mechanism of the steam reforming of calcium carbide furnace off-gas (CCFG) was also identified. The conversion characteristics of material and energy were ascertained by assessing four independent reactions and their reverse reactions. And the effects of temperature, pressure and steam-to-gas ratio on the conversion ratios of CO and CH4, the yield of H2 and the reaction heat were investigated. In addition, a method for determining the process parameters of steam reforming based on the follow-up utilization scheme of CCFG was proposed; the method involves using a four-panel diagram that plots parameters of the steam reforming process. Thus, the range of H2/CO mole ratio that could be obtained from the equilibrium system of steam reforming of CCFG was determined.  相似文献   

15.
There is significant interest in using hydrogen and natural gas for enhancing the performance of diesel engines. We report herein a numerical investigation on the ignition of n-C7H16/H2 and n-C7H16/CH4 fuel blends. The CHEMKIN 4.1 software is used to model ignition in a closed homogenous reactor under conditions relevant to diesel/HCCI engines. Three reaction mechanisms used are (i) NIST mechanism involving 203 species and 1463 reactions, (ii) Dryer mechanism with 116 species and 754 reactions, and (iii) a reduced mechanism (Chalmers) with 42 species and 168 reactions. The parameters include pressures of 30 atm and 55 atm, equivalence ratios of ? = 0.5, 1.0 and 2.0, temperature range of 800-1400 K, and mole fractions of H2 or CH4 in the blend between 0 and 100%. For n-C7H16/air mixtures, the Chalmers mechanism not only provides closer agreement with measurements compared to the other two mechanisms, but also reproduces the negative temperature coefficient regime. Consequently, this mechanism is used to characterize the effects of H2 or CH4 on the ignition of n-C7H16. Results indicate that H2 or CH4 addition has a relatively small effect on the ignition of n-C7H16/air mixtures, while the n-C7H16 addition even in small amount modifies the ignition of H2/air and CH4/air mixtures significantly. The n-C7H16 addition decreases and increases the ignition delays of H2/air mixtures at low and high temperatures, respectively, while its addition to CH4/air mixtures decreases ignition delays at all temperatures. The sensitivity analysis indicates that ignition characteristics of these fuel blends are dominated by the pyrolysis/oxidation chemistry of n-heptane, with heptyl (C7H16-2) and hydoxyl (OH) radicals being the two most important species.  相似文献   

16.
A detailed mechanism for methane–ethylene mixtures enriched with excessive amount of NO was systematically reduced for efficient numerical simulations of flames in arc-heated co-flowing air. Methane and ethylene were selected as the surrogate fuel in the present study due to their drastically different features of ignition and extinction properties and flame propagation speeds, such that the mixtures of them may be utilized to mimic practical hydrocarbon fuels with various kinetic properties in experiments. The recently released USC Mech-II for C1–C4 was grafted with the NOx sub-mechanism in GRI-Mech 3.0 with updated reaction parameters for prompt NO formation. The resulting detailed mechanism with 129 species and 900 reactions was first validated against experiments involving NOx enrichment and reasonably good agreements were observed. The detailed mechanism was then employed as the starting mechanism for the reduction. A skeletal mechanism with 44 species and 269 reactions was derived using the methods of directed relation graph (DRG) and DRG-aided sensitivity analysis (DRGASA); a 39-species reduced mechanism with 35 semi-global reaction steps was further obtained using the linearized quasi steady state approximations (LQSSA). Five species related to prompt NO were retained in the reduced mechanism because of their significant impacts on the fuel oxidation. The reduced mechanism closely agrees with the detailed mechanism for ignition and extinction of homogenous mixtures, as well as selected 1-D flames over a wide range of parameters with NO concentrations between 0% and 3%. The observed worst-case relative error of the reduction is approximately 20%. The reduced mechanism was further validated with experiments involving excessive NOx enrichment.  相似文献   

17.
A detailed PAH growth model is developed, which is solved using a kinetic Monte Carlo algorithm. The model describes the structure and growth of planar PAH molecules, and is referred to as the kinetic Monte Carlo-aromatic site (KMC-ARS) model. A detailed PAH growth mechanism based on reactions at radical sites available in the literature, and additional reactions obtained from quantum chemistry calculations are used to model the PAH growth processes. New rates for the reactions involved in the cyclodehydrogenation process for the formation of 6-member rings on PAHs are calculated in this work based on density functional theory simulations. The KMC-ARS model is validated by comparing experimentally observed ensembles on PAHs with the computed ensembles for a C2H2 and a C6H6 flame at different heights above the burner. The motivation for this model is the development of a detailed soot particle population balance model which describes the evolution of an ensemble of soot particles based on their PAH structure. However, at present incorporating such a detailed model into a population balance is computationally unfeasible. Therefore, a simpler model referred to as the site-counting model has been developed, which replaces the structural information of the PAH molecules by their functional groups augmented with statistical closure expressions. This closure is obtained from the KMC-ARS model, which is used to develop correlations and statistics in different flame environments which describe such PAH structural information. These correlations and statistics are implemented in the site-counting model, and results from the site-counting model and the KMC-ARS model are in good agreement. Additionally the effect of steric hindrance in large PAH structures is investigated and correlations for sites unavailable for reaction are presented.  相似文献   

18.
The effects of direct internal reforming in a fuel cell solid oxide (SOFC) on thermal fields are studied by mathematical modeling. This study presents the thermal fields of a standard fuel cell (Ni-YSZ/YSZ/LSM) anode supported. This study is also made in the perpendicular plane at the flow of gases. The fuel cell is powered by air and fuel, CH4, H2, CO2, CO and H2O hence the birth of the phenomenon of direct internal reforming (DIR-SOFC). It is based on reforming chemical reactions, steam reforming reaction and water–gas shift reaction. The main purpose of this work is the visualization of temperature fields under the influence of global chemical reactions and the confirmation of the thermal behavior of this chemical reaction. The thermal fields are obtained by a computer program (FORTRAN).  相似文献   

19.
The effects of variations in the fuel composition on the characteristics of H2/CO/CH4/air flames of gasified biomass are investigated experimentally and numerically. Experimental measurements and numerical simulations of the flame front position and temperature are performed in the premixed stoichiometric H2/CO/CH4/air opposed-jet flames with various H2 and CO contents in the fuel. The adiabatic flame temperatures and laminar burning velocities are calculated using the EQUIL and PREMIX codes of Chemkin collection 3.5, respectively. Whereas the flame structures of the laminar premixed stoichiometric H2/CO/CH4/air opposed-jet flames are simulated using the OPPDIF package with the GRI-Mech 3.0 chemical kinetic mechanisms and detailed transport properties. The measured flame front position and temperature of the stoichiometric H2/CO/CH4/air opposed-jet flames are closely predicted by the numerical calculations. Detailed analysis of the calculated chemical kinetic structures reveals that the reaction rate of reactions (R38), (R46), and (R84) increase with increasing H2 content in the fuel mixture. It is also found that the increase in the laminar flame speed with H2 addition is most likely due to an increase in active radicals during combustion (chemical effect), rather than from changes in the adiabatic flame temperature (thermal effect). Chemical kinetic structure and sensitivity analyses indicate that for the stoichiometric H2/CO/CH4/air flames with fixed H2 concentration in the fuel mixture, the reactions (R99) and (R46) play a dominant role in affecting the laminar burning velocity as the CO content in the fuel is increased.  相似文献   

20.
Since 2006, ceria is used as a redox reactive material for production of H2, CO, and syngas via a two-step solar driven thermochemical H2O/CO2 splitting cycle. Different forms of phase pure ceria were studied over a wide range of temperatures and oxygen partial pressures. To increase the redox reactivity and long-term stability, the effects of incorporation of different dopants in to the ceria fluorite structure (in varying proportions) were studied in detail. A variety of solar reactors, loaded with ceria based ceramics, were designed and developed to investigate the performance of these materials towards thermal reduction and H2O/CO2 splitting reactions. The thermodynamics and reaction kinetics of ceria based solar thermochemical H2O/CO2 splitting cycles were also explored heavily. This paper presents a detailed chronological insight into the development of ceria-based oxides as reactive materials for solar fuel production via thermochemical redox H2O/CO2 splitting cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号