首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a specially designed premixed combustion chamber system for ammonia-hydrogen and methane-air laminar premixed flames is introduced and the combustion limits of ammonia-hydrogen and methane-air flames are explored. The measurements obtained the blow-out limits (mixed methane: 400–700 mL/min, mixed hydrogen: 200–700 mL/min), mixing gas lean limit characteristics (mixed methane: 0–82%, mixed hydrogen: 0–37%) and lean/rich combustion characteristics (mixed methane: ? = 0.6–1.9, mixed hydrogen: ? = 0.9–3.2) of the flames. The results show that the ammonia-hydrogen-air flame has a smaller lower blow-out limit, mixing gas ratio, lean combustion limit and higher rich combustion limit, thereby proving the advantages of hydrogen as an effective additive in the combustion performance of ammonia fuel. In addition, the experiments show that increasing the initial temperature of the premixed gas can expand the lean/rich combustion limits of both the ammonia-hydrogen and ammonia-methane flames.  相似文献   

2.
An experimental study was conducted using outwardly propagating flame to evaluate the laminar burning velocity and flame intrinsic instability of diluted H2/CO/air mixtures. The laminar burning velocity of H2/CO/air mixtures diluted with CO2 and N2 was measured at lean equivalence ratios with different dilution fractions and hydrogen fractions at 0.1 MPa; two fitting formulas are proposed to express the laminar burning velocity in our experimental scope. The flame instability was evaluated for diluted H2/CO/air mixtures under different hydrogen fractions at 0.3 MPa and room temperature. As the H2 fraction in H2/CO mixtures was more than 50%, the flame became more unstable with the decrease in equivalence ratio; however, the flame became more stable with the decrease in equivalence ratio when the hydrogen fraction was low. The flame instability of 70%H2/30%CO premixed flames hardly changed with increasing dilution fraction. However, the flames became more stable with increasing dilution fraction for 30%H2/70%CO premixed flames. The variation in cellular instability was analyzed, and the effects of hydrogen fraction, equivalence ratio, and dilution fraction on diffusive-thermal and hydrodynamic instabilities were discussed.  相似文献   

3.
The effect of hydrogen addition and nitrogen dilution on laminar flame characteristics was investigated. The spherical expanding flame technique, in a constant volume bomb, was employed to extract laminar flame characteristics. The mole fraction of hydrogen in the methane–hydrogen mixture was varied from 0 to 1 and the mole fraction of nitrogen in the total mixture (methane–hydrogen–air–diluent) from 0 to 0.35. Measurements were performed at an initial pressure of 0.1 MPa and an initial temperature of 300 K. The mixtures investigated were under stoichiometric conditions. Based on experimental measurements, a new correlation for calculating the laminar burning velocity of methane–hydrogen–air–nitrogen mixtures is proposed. The laminar burning velocity was found to increase linearly with hydrogen mass fraction for all dilution ratios while the burned gas Markstein length decreases with the increase in hydrogen amount in the mixture except for high hydrogen mole fractions (>0.6). Nitrogen dilution has a nonlinear reducing effect on the laminar burning velocity and an increasing effect on the burned gas Markstein length. The experimental results and the proposed correlation obtained are in good agreement with literature values.  相似文献   

4.
In order to evaluate the potential of burning and reforming ammonia as a carbon-free fuel in production of hydrogen, fundamental unstretched laminar burning velocities, and flame response to stretch (represented by the Markstein number) for laminar premixed hydrogen-added ammonia/air flames were studied both experimentally and computationally. Freely (outwardly)-propagating spherical laminar premixed flames at normal temperature and pressure were considered for a wide range of global fuel-equivalence ratios, flame stretch rates (represented by the Karlovitz number) and the extent of hydrogen substitution. Results show the substantial increase of laminar burning velocities with hydrogen substitution, particularly under fuel-rich conditions. Also, predicted flame structures show that the hydrogen substitution enhances nitrogen oxide (NOx) and nitrous oxide (N2O) formation. At fuel-rich conditions, however, the amount of NOx and N2O emissions and the extent of the increase with the hydrogen substitution are much lower than those under fuel-lean conditions. These observations support the potential of hydrogen as an additive for improving the burning performance with low NOx and N2O emissions in fuel-rich ammonia/air flames and hence the potential of using ammonia as a clean fuel. Increasing the amount of added hydrogen tends to enhance flame sensitivity to stretch.  相似文献   

5.
A comprehensive measurement and investigation of the cellularization of methanol/hydrogen flame is important for the thorough understanding of the transition of turbulent flame. In this work, a constant volume combustion bomb with schlieren photography technology is used to study the flame evolution of methanol/hydrogen fuel. By investigating the flames smooth laminar flame to a certain degree of cellular flame, the effect of hydrogen addition on the cellular instability of the hydrogen/methanol spherical flame is revealed. The experiments were conducted with different hydrogen mixing ratios (0%–80%) at different equivalence ratios (0.8–1.5) under a series of initial temperature (375 K–450 K) and pressure (1.0 bar–3.0 bar). The results showed that the process of flame cellular instability advanced in general as the hydrogen mixing ratio increased. The promoting effect of hydrogen addition was more significant in lean flames. The cellularization in lean flames was dominated by the instability of thermal diffusion, while that in the rich flames was dominated by the hydrodynamic instability. The initial pressure impacts the flame cellar instability mainly through the hydrodynamic instability.  相似文献   

6.
The present study investigates freely propagating methane/hydrogen lean-premixed laminar flames at elevated pressures to understand the hydrogen addition effect of natural gas on the NO formation under the conditions of industrial gas turbine combustors. The detailed chemical kinetic model which was used in the previous study on the NO formation in high pressure methane/air premixed flames was adopted for the present study to analyze NO formation of methane/hydrogen premixed flames. The present mechanism shows good agreement with experimental data for methane/hydrogen mixtures, including ignition delay times, laminar burning velocities, and NO concentration in premixed flames. Hydrogen addition to methane/air mixtures with maintaining methane content leads to the increase of NO concentration in laminar premixed flames due to the higher flame temperature. Methane/hydrogen/argon/air premixed flames are simulated to avoid the flame temperature effect on NO formation over a pressure range of 1–20atm and equivalence ratio of 0.55. Kinetic analyses shows that the N2O mechanism is important on NO formation for lean flames between the reaction zone and postflame region, and thermal NO is dominant in the postflame zone. The hydrogen addition leads to the increase of NO formation from prompt NO and NNH mechanisms, while NO formation from thermal and N2O mechanisms are decreased. Additionally, the NO formation in the postflame zone has positive pressure dependencies for thermal NO with an exponent of 0.5. Sensitivity analysis results identify that the initiation reaction step for the thermal NO and the N2O mechanism related reactions are sensitive to NO formation near the reaction zone.  相似文献   

7.
A computational study is performed to investigate the effects of hydrogen addition on the fundamental characteristics of propagating spherical methane/air flames at different conditions. The emphasis is placed on the laminar flame speed and Markstein length of methane/hydrogen dual fuel. It is found that the laminar flame speed increases monotonically with hydrogen addition, while the Markstein length changes non-monotonically with hydrogen blending: it first decreases and then increases. Consequently, blending of hydrogen to methane/air and blending methane to hydrogen/air both destabilize the flame. Furthermore, the computed results are compared with measured data available in the literature. Comparison of the computed and measured laminar flame speeds shows good agreement. However, the measured Markstein length is shown to strongly depend on the flame radii range utilized for data processing and have very large uncertainty. It is found that the experimental results cannot correctly show the trend of Markstein length changing with the hydrogen blending level and pressure and hence are not reliable. Therefore, the computed Markstein length, which is accurate, should be used in combustion modeling to include the flame stretch effect on flame speed.  相似文献   

8.
Experimental results are presented on the effect of methane content in a non-aromatic fuel mixture on the formation of aromatic hydrocarbons and soot in various fundamental combustion configurations. The systems considered consist of a laminar flow reactor, a laminar co-flow diffusion flame burner, and a laminar, premixed flame burner, all of which operate at atmospheric pressure. In the flow reactor, the experiments are performed at 1430 K, constant C-atom flow rates, 98% nitrogen dilution, C/O ratio = 2, and with fuel mixtures consisting of ethylene and methane. The diffusion flames are performed with fuel mixtures of methane and ethylene diluted in nitrogen to maintain a constant adiabatic flame temperature. The premixed flame experiments are performed with n-heptane and methane mixtures at a C/O ratio = 0.67 with nitrogen-impoverished air. The results show the existence of synergistic chemical effects between methane and other alkanes in the production of aromatics, despite reduced acetylene concentrations. This effect is attributable to the ability of methane to enhance the production of methyl radicals that will then promote production channels of aromatics that rely on odd-carbon-numbered species. Benzene, naphthalene, and pyrene show the strongest sensitivity to the presence of added methane. This synergy on aromatics trickles down to soot via enhanced inception and surface growth rates by polycyclic aromatic hydrocarbon condensation, but the overall effects on soot volume-fraction are smaller due to a compensating reduction in surface growth from acetylene. These results are observed under the very fuel-rich environments existing in the flow reactor and diffusion flames. In the premixed flames, however, instabilities did not permit investigation of conditions with sufficiently high equivalence ratios to perturb the aromatic and soot-growth regions.  相似文献   

9.
In this paper, experimental data of laminar burning velocity, Markstein length, and flame thickness of LPG flames with various percentages of hydrogen (H2) enrichments have been presented. The experiments were conducted under the conditions of 0.1 MPa, 300 K in a constant volume chamber. The tested equivalence ratios of air/fuel mixture range from 0.6 to 1.5, and the examined LPG contains 10%–90% of hydrogen in volume. Experimental results show that hydrogen addition significantly increase the laminar burning velocity of LPG, and the accelerating effectiveness is substantial when the percentage of hydrogen is larger than 60%. Effect of hydrogen addition on diffusion thermal instability, as indicated by Markstein length, was analyzed at various equivalence ratios. Hydrogen addition decreases the flame thickness. Equivalence ratio has more dominating effect on flame thickness than hydrogen does. For the fuel with 10% LPG and 90% hydrogen, the flame thickness values are close for all equivalence ratios.  相似文献   

10.
Advanced hydrogen gas turbine is a promising technology to achieve near-zero emission of carbon dioxide and higher cycle efficiency. With the increased firing temperature and pressure ratio, nitrogen reinjection combined with dry premixed combustion is promising to achieve the challenging low NOx emission. In this study, the effects of nitrogen dilution and fuel/air premixing characteristics on the flame characteristics and NOx emission are investigated first through simulating one-dimensional premixed flames with a 13-species and 39-reaction mechanism at the elevated engine operation conditions. The variation of flame thicknesses and laminar flame speeds with nitrogen dilution is investigated. The NOx formation is characterized by the flame-front NOx and the constant NOx formation rates in the post-flame region. It is shown that the flame-front NOx is an order of 1 ppm and does not change significantly (within 20%) with nitrogen dilution. In contrast, the NOx formation rates in the post-flame region decrease monotonically with nitrogen dilution due to the decrease of oxygen concentration. A detailed analysis of NOx formation reveals that the N2O pathway is significant and it can account for at least 20% of the NOx formation in the post-flame region. Then an analytic model considering both the extended Zeldovich mechanism and the N2O pathway is constructed by assuming the involved radicals being in chemical equilibrium. The model can be employed to efficiently estimate the NOx formation in fully premixed hydrogen gas turbines. Next, the effects of fuel/air premixing characteristics on the mean NOx formation rate in the post-flame region are quantified by reconstructing the PDF of mixture fraction. It is shown that without the nitrogen dilution, the NOx formation rate increases dramatically with fuel/air unmixedness due to the existence of local hot spots. Nitrogen dilution can dramatically reduce the NOx formation rate at the same level of unmixedness through reducing the local hot spots. Moreover, nitrogen dilution reduces the sensitivity of the NOx formation rate to fuel/air unmixedness, which greatly alleviates the mixing requirement for the premixing nozzles in gas turbines. Finally, a model for the estimation of NOx emission is constructed, which builds the connection between NOx emission, nitrogen dilution, unmixedness and flow residence time in combustors.  相似文献   

11.
Global warming due to CO2 emissions has led to the projection of hydrogen as an important fuel for future. A lot of research has been going on to design combustion appliances for hydrogen as fuel. This has necessitated fundamental research on combustion characteristics of hydrogen fuel. In this work, a combination of experiments and computational simulations was employed to study the effects of diluents (CO2, N2, and Ar) on the laminar burning velocity of premixed hydrogen/oxygen flames using the heat flux method. The experiments were conducted to measure laminar burning velocity for a range of equivalence ratios at atmospheric pressure and temperature (300 K) with reactant mixtures containing varying concentrations of CO2, N2, and Ar as diluents. Measured burning velocities were compared with computed results obtained from one-dimensional laminar premixed flame code PREMIX with detailed chemical kinetics and good agreement was obtained. The effectiveness of diluents in reduction of laminar burning velocity for a given diluent concentration is in the increasing order of argon, nitrogen, carbon dioxide. This may be due to increased capabilities either to quench the reaction zone by increased specific heat or due to reduced transport rates. The lean and stoichiometric H2/O2/CO2 flames with 65% CO2 dilution exhibited cellular flame structures. Detailed three-dimensional simulation was performed to understand lean H2/O2/CO2 cellular flame structure and cell count from computed flame matched well with the experimental cellular flame.  相似文献   

12.
Propagation characteristics of hydrogen-air deflagration need to be understood for an accurate risk assessment. Especially, flame propagation velocity is one of the most important factors. Propagation velocity of outwardly propagating flame has been estimated from burning velocity of a flat flame considering influence of thermal expansion at a flame front; however, this conventional method is not enough to estimate an actual propagation velocity because flame propagation is accelerated owing to cellular flame front caused by intrinsic instability in hydrogen-air deflagration. Therefore, it is important to understand the dynamic propagation characteristics of hydrogen-air deflagration. We performed explosion tests in a closed chamber which has 300 mm diameter windows and observed flame propagation phenomena by using Schlieren photography. In the explosion experiments, hydrogen-air mixtures were ignited at atmospheric pressure and room temperature and in the range of equivalence ratio from 0.2 to 1.0. Analyzing the obtained Schlieren images, flame radius and flame propagation velocity were measured. As the result, cellular flame fronts formed and flame propagations of hydrogen–air mixture were accelerated at the all equivalence ratios. In the case of equivalent ratio φ = 0.2, a flame floated up and could not propagate downward because the influence of buoyancy exceeded a laminar burning velocity. Based upon these propagation characteristics, a favorable estimation method of flame propagation velocity including influence of flame acceleration was proposed. Moreover, the influence of intrinsic instability on propagation characteristics was elucidated.  相似文献   

13.
Effects of fuel variability involving small fluctuations in fuel composition on physicochemical properties of premixed biogas-hydrogen combustion are quantified using global sensitivity analysis approach. Different proportions of hydrogen addition, and different CH4:CO2 ratios in biogas-hydrogen fuel with uncertainties are investigated from a statistical point of view. Analyses show that small fluctuation of biogas-hydrogen fuel composition does not lead to significant fluctuations in physicochemical properties of combustion such as laminar flame speed and adiabatic flame temperature. A fast growth of laminar flame speed fluctuation from lean to rich combustion of biogas-hydrogen fuel is observed implying a less stable flame at rich condition, and lower dimensional studies show that hydrogen uncertainty takes predominant responsibility for the rapid increase of flame speed. Apart from the uncertainty of hydrogen, it is found that carbon dioxide concentration fluctuation has a larger negative effect on stabilising biogas-hydrogen flame compared to that of methane. It is also found that for biogas-hydrogen fuel with high hydrogen content, contribution of carbon dioxide variability to flame speed fluctuation decreases while methane contribution increases.  相似文献   

14.
The influence of dissociated methanol (DM) and diluent (CO2 and N2) addition on methane was investigated in a constant volume chamber under initial conditions of 3 bar and 343 K. CO was also added in separate proportions instead of DM under the same conditions to assess its effect. The laminar burning velocity, Markstein length and flame instability were analyzed systematically under various equivalence ratios (0.8–1.4), dissociated methanol gas ratios (40 and 80%), CO ratios (40 and 80%) and dilution ratios (0–15%). Furthermore, the flame speed of the fuel mixture and the production rate of key reactants were analyzed based on the calculation results of the Aramco Mech 2.0 mechanism to determine the influence principles of dilution. The results show that dissociated methanol gas increases the flame speed of the mixtures and promotes instability of the flame, and H2 is the dominant component in enhancing the combustion process. Within the dilution ratio range of this study, the diluents decrease the laminar burning velocity of the mixtures since the addition of diluent gas decreases the concentration of key reactants, such as H and OH. The addition of diluent gas can inhibit the flame instability, but the effect is not clear. Compared with N2, the effect of CO2 is more significant.  相似文献   

15.
The laminar flame characteristics of natural gas–hydrogen–air–diluent gas (nitrogen/CO2) mixtures were studied in a constant volume combustion bomb at various diluent ratios, hydrogen fractions and equivalence ratios. Both unstretched laminar burning velocity and Markstein length were obtained. The results showed that hydrogen fraction, diluent ratio and equivalence ratio have combined influence on laminar burning velocity and flame instability. The unstretched laminar burning velocity is reduced at a rate that is increased with the increase of the diluent ratio. The reduction effect of CO2 diluent gas is stronger than that of nitrogen diluent gas. Hydrogen-enriched natural gas with high hydrogen fraction can tolerate more diluent gas than that with low hydrogen fraction. Markstein length can either increase or decrease with the increase of the diluent ratio, depending on the hydrogen fraction of the fuel.  相似文献   

16.
The use of hydrogenated fuels shows considerable promise for applications in gas turbines and internal combustion engines. In the present work, the effects of hydrogen addition in methane/air flames are investigated using both a laminar flame propagation facility and a high-pressure turbulent flame facility. The aim of this research is to contribute to the characterization of lean methane/hydrogen/air premixed turbulent flames at high pressures, by studying the flame front geometry, the flame surface density and the instantaneous flame front thermal thickness distributions. The experiments and analyses show that a small amount of hydrogen addition in turbulent premixed methane–air flames introduces changes in both instantaneous and average flame characteristics.  相似文献   

17.
Recent studies have demonstrated promising performance of adding hydrogen to methane in internal combustion engines and substantial attention has been devoted to binary fuel blends. Due to the strong nonlinearity of chemical reaction process, the laminar flame speed of binary fuel blends cannot be obtained from linear combination of the laminar flame speed of each individual fuel constituent. In this study, theoretical analysis is conducted for a planar premixed flame of binary fuel blends and a model for the laminar flame speed is developed. The model shows that the laminar flame speed of binary fuel blends depends on the square of the laminar flame speed of each individual fuel component. This model can predict the laminar flame speed of binary fuel blends when three laminar flame speeds are available: two for each individual fuel component and the third one for the fuel blends at one selected blending ratio. The performance of this model as well as models reported in the literature is assessed for methane/hydrogen mixtures. It is demonstrated that good agreements with calculations or measurements can be achieved by the present model prediction. Moreover, it is found that the present model also works for other binary fuel blends besides methane/hydrogen.  相似文献   

18.
Fundamental to the creation of a hydrogen economy is a viable, safe and affordable hydrogen-energy-system. Examining carefully some of the key properties of hydrogen that are related to fire and explosion, it is found that hydrogen is combustible over a wide range of concentrations. At atmospheric pressure, it is combustible at concentrations from 4% to 74.2% by volume. It has the highest flame velocity of any gas and its ignition energy is very low, which is 32% less than methane gas.In this paper, the problem of “safe hydrogen” is tackled using a new theoretical approach. Hydrogen is mixed with predetermined amounts of methane gas and to be sold as “Hydrothane”. The properties of this mixture—most important are the flame speed, lower explosion limit (LEL) and upper explosion limit (UEL) are to be developed as a function of the ratio of the hydrogen–methane.The maximum flame speed, cm/s, for a selected number of hydrocarbons along with the corresponding volume percentage of combustible mixture (fuel in air) are used in the proposed analysis. In addition, Le Chatelier's law is used to predict limits of flammability of the Hydrothane.  相似文献   

19.
Technical limits of high pressure and temperature measurements as well as hydrodynamic and thermo-diffusive instabilities appearing in such conditions prevent the acquisition of reliable results in term of burning velocities, restraining the domain of validity of current laminar flame speed correlations to few bars and hundreds of Kelvin. These limits are even more important when the reactivity of the considered fuel is high. For example, the high-explosive nature of pure hydrogen makes measurements even more tricky and explains why only few correlations are available to describe the laminar flame velocity of high hydrogen blended fuels as CH4-H2 mixtures. The motivation of this study is thereby to complement experimental measurements, by extracting laminar flame speeds and thicknesses from complex chemistry one-dimensional simulations of premixed laminar flames. A wide number of conditions are investigated to cover the whole operating range of common practical combustion systems such as piston engines, gas turbines, industrial burners, etc. Equivalence ratio is then varied from 0.6 to 1.3, hydrogen content in the fuel from 0 to 100%, residual burned gas mass ratio from 0 to 30%, temperature of the fresh mixtures from 300 to 950 K, and pressure from 0.1 to 11.0 MPa. Many chemical kinetics mechanisms are available to describe premixed combustion of CH4-H2 blends and several of them are tested in this work against an extended database of laminar flame speed measurements from the literature. The GRI 3.0 scheme is finally chosen. New laminar flame speed and thickness correlations are proposed in order to extend the domain of validity of experimental correlations to high proportions of hydrogen in the fuel, high residual burned gas mass ratios as well as high pressures and temperatures. A study of the H2 addition effect on combustion is also achieved to evaluate the main chemical processes governing the production of H atoms, a key contributor to the dumping of the laminar flame velocity.  相似文献   

20.
One of the main benefits sought by including hydrogen in the alternative fuels mix is emissions reduction - eventually by 100%. However, in the near term, there is a very significant cost differential between fossil fuels and hydrogen. Hythane (a blend of hydrogen and natural gas) can act as a viable next step on the path to an ultimate hydrogen economy as a fuel blend consisting of 8-30% hydrogen in methane can reduce emissions while not requiring significant changes in existing infrastructure.This work seeks to evaluate whether hythane may be safer than both hydrogen and methane under certain conditions. This is due to the fact hythane combines the positive safety properties of hydrogen (strong buoyancy, high diffusivity) and methane (much lower flame speeds and narrower flammability limits as compared to hydrogen). For this purpose, several different mixture compositions (e.g. 8%, 20% and 30% hydrogen) are considered. The evaluation of (a) dispersion characteristics (which are more positive than for methane), (b) combustion characteristics (which are closer to methane than hydrogen), and (c) Combined dispersion + explosion risk is performed. This risk is expected to be comparable to that of pure methane, possibly lower in some situations, and definitely lower than for pure hydrogen.The work is performed using the CFD software FLACS that has been well-validated for safety studies of both natural gas/methane and hydrogen systems. The first part of the work will involve validating the flame speeds and flammability limits predicted by FLACS against values available in literature. The next part of the work involves validating the overpressures predicted by the CFD tool for combustion of premixed mixtures of methane and hydrogen with air against available experimental data. In the end, practical systems such as vehicular tunnels, garages, etc. is used to demonstrate positive safety benefits of hythane with comparisons to similar simulations for both hydrogen and methane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号