首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The EC funded Naturalhy project is assessing the potential for using the existing gas infrastructure for conveying hydrogen as a mixture with natural gas (methane). The hydrogen could then be removed at a point of use or the natural gas/hydrogen mixture could be burned in gas-fired appliances thereby providing reduced carbon emissions compared to natural gas. As part of the project, the impact on the safety of the gas system resulting from the addition of hydrogen is being assessed. A release of a natural gas/hydrogen mixture within a vented enclosure (such as an industrial housing of plant and equipment) could result in a flammable mixture being formed and ignited. Due to the different properties of hydrogen, the resulting explosion may be more severe for natural gas/hydrogen mixtures compared to natural gas. Therefore, a series of large scale explosion experiments involving methane/hydrogen mixtures has been conducted in a 69.3 m3 enclosure in order to assess the effect of different hydrogen concentrations on the resulting explosion overpressures. The results showed that adding up to 20% by volume of hydrogen to the methane resulted in a small increase in explosion flame speeds and overpressures. However, a significant increase was observed when 50% hydrogen was added. For the vented confined explosions studied, it was also observed that the addition of obstacles within the enclosure, representing congestion caused by equipment and pipework, etc., increased flame speeds and overpressures above the levels measured in an empty enclosure. Predictions of the explosion overpressure and flame speed were also made using a modified version of the Shell Global Solutions model, SCOPE. The modifications included changes to the burning velocity and other physical properties of methane/hydrogen mixtures. Comparisons with the experimental data showed generally good agreement.  相似文献   

2.
In order to study the influence of nitrogen on the deflagration characteristics of premixed hydrogen/methane, the explosion parameters of premixed hydrogen/methane within various volume ratios and different dilution ratios were studied by using a spherical flame method at room temperature and pressure. The results are as follows: The addition of nitrogen makes the upper limit of explosion of hydrogen/methane premixed gas drop, and the lower limit rises. For explosion hazard (F-number), hydrogen/methane premixed fuel with a hydrogen addition ratio of 10% has the lowest risk, and nitrogen has a greater impact on the dangerous degree of hydrogen and methane premixed gas whose hydrogen addition ratio does not exceed 30%. In terms of flame structure, the spherical flame was affected by buoyancy instability as the percentage of nitrogen dilution increased, but the buoyancy instability gradually decreased as the percentage of hydrogen addition increased. The addition of diluent gas reduces the spreading speed of the stretching flame and reduces the stretching rate in the initial stage of flame development. The laminar flame propagation velocity calculated by the experiment in this paper is consistent with the laminar flow velocity of the hydrogen/methane premixed gas calculated by GRI Mech 3.0. Considering the explosion parameters such as flammability limit, laminar combustion rate and deflagration index, when hydrogen is added to 70%, it is the turning point of hydrogen/methane premixed fuel.  相似文献   

3.
The mitigation effects of ultrafine water mist on hydrogen/methane mixture explosions with hydrogen fraction (ϕ) of the range from 0% to 60% were experimentally studied in a vented chamber with obstacles. The spraying time, droplets size of water mist and the volume ratio of hydrogen were varied in the tests, and the key parameters that reflect the explosion characteristics such as the flame propagation imagines, flame propagation velocity, and explosion overpressure were obtained. The results show that the ultrafine water mist presents a significant mitigation effect on hydrogen/methane mixture explosions. The flame propagation structures are similar under the condition of without and with ultrafine water mist while the flame temperature is declined by the physical and chemical inhibition by ultrafine water mist. In addition, the mitigation effect increases with the increase of water mist flux. As a result, the maximum flame speed and overpressure of ϕ = 30% hydrogen/methane mixture explosion are declined by 33.3% and 58.4% under the condition of spraying for 2 min with 15 μm ultrafine water mist, respectively. Besides, the mitigation effects of ultrafine water mist on ϕ = 30% hydrogen/methane mixture explosion descends evidently with the increase of the droplets size of the range from 6 μm to 25 μm, which due to the easier evaporation and the greater total droplets surface area of the smaller water mist. However, the explosion mitigation effect of ultrafine water mist on the hydrogen/methane mixture actually descends with the increase hydrogen fraction.  相似文献   

4.
To improve the safety of the methane/hydrogen mixture pipeline network, The experimental deflagration quenching behavior of porous materials on hydrogen mixed methane in barrier tubes was studied, the influence of the hydrogen mixing ratio on the quenching results of porous materials and the transient change of overpressure was discussed, the critical quenching hydrogen mixing ratio of porous materials was explored. Results show that the hydrogen mixing ratio has a significant effect on the quenching results of porous materials. According to the different quenching results of porous materials under different hydrogen mixing ratios, the successful quenching zone (φ<19%) and the quenching failure zone (φ ≥ 19%) can be divided. It can be determined that the critical quenching hydrogen mixing ratio is φ = 19%. The critical quenching speed is 33.0 m/s. When the porous material is coupled with hydrogen mixing, the pressure curve appears as a “multi-peak” phenomenon, and the maximum pressure peak is generated by the “multi-peak” game. If the hydrogen mixing ratio is greater than the critical quenching hydrogen mixing ratio, it may bring about the uncertainty of the maximum pressure peak and increase the unpredictability of the explosion hazard to the gas pipeline network. Therefore, reasonable hydrogen mixing is conducive to improving the safety of methane/hydrogen mixture pipeline network transportation. The research results could provide an important reference for the engineering application of methane/hydrogen mixture flame arrester design and the selection of safe hydrogen concentration.  相似文献   

5.
Numerical simulations were performed to study explosion characteristics of the unconfined clouds. The examined cloud volume was 4 m × 4 m × 2 m. The build-in obstruction inside the cloud was the 8 × 8 × 4 perpendicular rod array. The obstacle volume blockage ratio was 0.74. Three gases were considered: hydrogen/air at the stoichiometric concentrations, propane/air at the stoichiometric concentrations, and methane/air at the stoichiometric concentrations. The hydrogen/air cloud explosion has higher peak overpressure and the overpressure rises locally at the nearby region of the cloud boundary. The explosion overpressures of both methane/air and propane/air are lower, compared with the hydrogen/air, and decreases with distance. The maximum peak dynamic pressure is reached beyond the original cloud, which is clearly different from the explosion peak overpressure tends. Furthermore, dynamic pressure of a cloud explosion is of the same order as overpressure. The explosion flame region for the hydrogen/air cloud is approximately 1.25 times of the original width of the cloud. The explosion flame regions for propane/air or methane/air clouds are approximately 1.4 times of the original width of the cloud. Unlike the explosion overpressures, the explosion temperatures have little difference between the three mixture examined in this study. The higher energy of explosive mixture generates a high temperature hazard effect, but the higher energy of explosive mixture may not generate a larger overpressure hazard effect in a gas explosion accident.  相似文献   

6.
Numerical and experimental studies are conducted to grasp downstream interactions between premixed flames stratified with two different kinds of fuel mixture. The selected fuel mixtures are methane and a nitrogen-diluted hydrogen with composition of 30% H2 + 70% N2. Extinction limits are determined for methane/air and (30% H2 + 70% N2)/air over the entire range of mixture concentrations. These extinction limits are shown to be significantly modified due to the interaction such that a mixture much beyond the flammability limit can burn with the help of a stronger flame. The lean extinction limit shows both the slanted segments of lower and upper branches due to the strong interaction with Lewis numbers of deficient reactant less than unity, while the rich extinction limit has a square shape due to the weak interaction with Lewis numbers of deficient reactant larger than unity. The regimes of negative flame speed show an asymmetric aspect with a single wing shape. The negative flame always appears only when methane is weak. The extent of interaction depends on the separation distance between the flames, which are the functions of the mixtures’ concentrations, the strain rate, the Lewis numbers, and the preferential diffusions of the penetrated hydrogen from the nitrogen-diluted hydrogen flame. The important role of preferential diffusion effects of hydrogen in the flame interaction is also discussed.  相似文献   

7.
In this paper, large eddy simulation (LES) is performed to investigate the propagation characteristics of premixed hydrogen/methane/air flames in a closed duct. In LES, three stoichiometric hydrogen/methane/air mixtures with hydrogen fractions (volume fractions) of 0, 50% and 100% are used. The numerical results have been verified by comparison with experimental data. All stages of flame propagation that occurred in the experiment are reproduced qualitatively in LES. For fuel/air mixtures with hydrogen fractions of 0 and 50%, only four stages of “tulip” flame formation are observed, but when the hydrogen fraction is 100%, the distorted “tulip” flame appears after flame front inversion. In the acceleration stage, the LES and experimental flame speed and pressure dynamic coincide with each other, except for a hydrogen fraction of 0. After “tulip” flame formation, all LES and experimental flame propagation speeds and pressure dynamics exhibit the same trends for hydrogen fractions of 0 and 100%. However, when the hydrogen fraction is 50%, a slight periodic oscillation appears only in the experiment. In general, the different structures displayed in the flame front during flame propagation can be attributed to the interaction between the flame front, the vortex and the reverse flow formed in the unburned and burned zones.  相似文献   

8.
The direct synthesis of hydrogen peroxide (DSH) from hydrogen and oxygen is an attractive production route due to its green nature. However, it faces multiple technical challenges, the biggest being the explosion risk of the flammable gas mixture. Herein we have used microreactors to perform the reaction in an inherently safer way which allows the hydrogen concentration to fall within the explosion limit range. For the first time, we have studied the flame propagation phenomena inside a microreactor to determine the optimum channel dimension for DSH. A mechanism of “fast synthesis and slow destruction” has been proposed via investigation on the influence of channel length and liquid flow rate. Besides, a variety of reaction parameters including gas flow rate, oxygen: hydrogen ratio, catalyst composition and gas pressure have been studied carefully. The successful employment of a microreactor in this case has indicated the potential of using microreactors to inhibit the explosion risks of hazardous processes.  相似文献   

9.
The use of so-called “green” hydrogen for decarbonisation of the energy and propulsion sectors has attracted considerable attention over the last couple of decades. Although advancements are achieved, hydrogen still presents some constraints when used directly in power systems such as gas turbines. Therefore, another vector such as ammonia can serve as a chemical to transport and distribute green hydrogen whilst its use in gas turbines can limit combustion reactivity compared to hydrogen for better operability. However, pure ammonia on its own shows slow, complex reaction kinetics which requires its doping by more reactive molecules, thus ensuring greater flame stability. It is expected that in forthcoming years, ammonia will replace natural gas (with 90% methane in volume) in power and heat production units, thus making the co-firing of ammonia/methane a clear path towards replacement of CH4 as fossil fuel. Hydrogen can be obtained from the pre-cracking of ammonia, thus denoting a clear path towards decarbonisation by the use of ammonia/hydrogen blends. Therefore, ammonia/methane/hydrogen might be co-fired at some stage in current combustion units, hence requiring a more intrinsic analysis of the stability, emissions and flame features that these ternary blends produce. In return, this will ensure that transition from natural gas to renewable energy generated e-fuels such as so-called “green” hydrogen and ammonia is accomplished with minor detrimentals towards equipment and processes. For this reason, this work presents the analysis of combustion properties of ammonia/methane/hydrogen blends at different concentrations. A generic tangential swirl burner was employed at constant power and various equivalence ratios. Emissions, OH1/NH1/NH21/CH1 chemiluminescence, operability maps and spectral signatures were obtained and are discussed. The extinction behaviour has also been investigated for strained laminar premixed flames. Overall, the change from fossils to e-fuels is led by the shift in reactivity of radicals such as OH, CH, CN and NH2, with an increase of emissions under low and high ammonia content. Simultaneously, hydrogen addition improves operability when injected up to 30% (vol), an amount at which the hydrogen starts governing the reactivity of the blends. Extinction strain rates confirm phenomena found in the experiments, with high ammonia blends showing large discrepancies between values at different hydrogen contents. Finally, a 20/55/25% (vol) methane/ammonia/hydrogen blend seems to be the most promising at high equivalence ratios (1.2), with no apparent flashback, low emissions and moderate formation of NH2/OH radicals for good operability.  相似文献   

10.
This work is focused on the explosion characteristics of premixed gas containing different volume fractions of hydrogen in a narrow channel (1000 mm × 50 mm × 10 mm) under the circumstance of stoichiometric ratio. The ignition positions were set in the closed end and the middle of the pipeline respectively. The results showed that when the gas was ignited at the pipeline closed end, the propagating flame was tulip structure for different premixed gas. When the hydrogen volume fraction was less than 40%, the flame propagation speed increased significantly with the rise of hydrogen volume fraction, and the overpressure peak also appeared obviously in advance. However, when the volume fraction of hydrogen was more than 40%, the increase of flame propagation speed and the overpressure peak occurrence time varied slightly. Furthermore, when the ignition position was placed in the middle of the pipeline, the flame propagation speed propagating to the opening end was much faster than that propagating to the closing end, and there was no tulip shape when the flame propagates to the opening end. The flame propagating to the closed end appeared tulip shape under the influence of airflow, and high-frequency flame oscillation occurred during the propagation. This work shows that the hydrogen volume fraction and ignition position significantly affected the flame structure, flame front speed, and explosion overpressure.  相似文献   

11.
Hydrogen is seen as an important energy carrier for the future which offers carbon free emissions. At present it is mainly used in refueling hydrogen fuel cell cars. However, it can also be used together with natural gas in existing gas fired equipment with the benefit of lower carbon emissions. This can be achieved by introducing hydrogen into existing natural gas pipelines. These pipelines are designed, constructed and operated to safely transport natural gas, which is mostly methane. Because hydrogen has significantly different physical and chemical properties than natural gas, any addition of hydrogen my adversely affect the integrity of the pipeline network, increasing the likelihood and consequences of an accidental leak. Since it increases the likelihood and consequences of an accidental leak, it increases the risk of explosion. In order to address various safety issues related to addition of hydrogen in to a natural gas pipeline a EU project NATURALHY was introduced. A major objective of the NATURALHY project was to identify how much hydrogen could be introduced into the natural gas pipeline network. Such that it does not adversely impact the safety of the pipeline network and significantly increase the risk to the public. This paper reports experimental work conducted to measure the explosion overpressure generated by ignition of hydrogen-methane-air mixture in a highly congested region consisting of interconnected pipes. The composition of the methane/hydrogen mixture used was varied from 0% hydrogen (100% methane) to 100% hydrogen (0% methane) to understand its effect on generated explosion overpressure. It was observed that the maximum overpressures generated by methane-hydrogen mixtures with 25% (by volume) or less hydrogen content are not likely to be significantly greater than those generated by methane alone. Therefore, it can be concluded that the addition of less than 25% by volume of hydrogen into pipeline networks would not significantly increase the risk of explosion.  相似文献   

12.
This paper describes a mechanism for the stabilization of ultra lean premixed methane/air flames by pulsed nonequilibrium plasma enhancement. It is shown that the pulsed discharge plasma produces a cool (~500–600 K) stream of relatively stable intermediate species including hydrogen (H2) and carbon monoxide (CO), which play a central role in enhancing flame stability. This stream is readily visualized by ultraviolet emission from electronically excited hydroxyl (OH) radicals. The rotational and vibrational temperature of this “preflame” are determined from its emission spectrum. Qualitative imaging of the overall flame structure is obtained by planar laser-induced fluorescence measurements of OH. Preflame nitric oxide (NO) concentrations are determined by gas sampling chromatography. A simple numerical model of this plasma enhanced premixed flame is proposed that includes the generation of the preflame through plasma activation, and predicts the formation of a dual flame structure that arises when the preflame serves to pilot the combustion of the surrounding non-activated premixed flow. The calculation represents the plasma through its ability to produce an initial radical yield, which serves as a boundary condition for conventional flame simulations. The simulations also capture the presence of the preflame and the dual flame structure, and predict preflame levels of NO comparable to those measured. A subsequent pseudo-sensitivity analysis of the preflame shows that flame stability is most sensitive to the concentrations of H2 and CO in the preflame. As a consequence of the role of H2 and CO in enhancing the flame stability, the blowout limit extensions of methane/air and hydrogen/air mixtures in the absence/presence of a discharge are investigated experimentally. For methane/air mixtures, the blowout limit of the current burner is extended by ~10% in the presence of a discharge while comparable studies carried out in lean hydrogen/air flames fail to extend this limit.  相似文献   

13.
The consequences of hydrogen leaks and explosions are predicted for the sake of the safety in hydrogen refueling stations. In this paper, the effect of wind speed on hydrogen leak and diffusion is analyzed in different regions of a hydrogen refueling station, and the influence of delayed ignition time on hydrogen explosion after an accidental hydrogen leak is further studied by numerical simulation. Results show that the effect of wind speed on the probability of hydrogen fires is distinctive in different regions of hydrogen refueling station. The size of combustible clouds in the trailer front region and the outer region increases in the low wind speed case, and the front of combustible clouds is formed in a spherical shape in the outer region, which can greatly increase the probability of hydrogen explosion. However, the high wind speed may cause an increase of the risk of accidents in the near ground region. Moreover, a non-linear correlation is shown between the rate of combustible cloud dissipation and wind speed after the hydrogen stops leaking. In addition, it is found that an increase in delayed ignition time may lead to an increase in explosion intensity, which is related with the larger high temperature area and stronger explosion overpressure. Two flame fronts and the reverse propagation of the explosion overpressure can be observed, when the delayed ignition time is larger.  相似文献   

14.
This paper demonstrates experimental investigation on the self-ignition and subsequent flame propagation of high-pressure hydrogen-methane mixture release via a tube. The proportion of methane added to hydrogen is 2.5% (vol.). A transparent rectangular tube (d = 15 mm, L = 400 mm) is used in the experiments. It is shown that the minimum burst pressure required for self-ignition increases 1.57 times for only 2.5% methane addition from 2.89 MPa (pure hydrogen) up to 4.68 MPa (2.5% CH4 addition). This is mainly caused by the following reasons: on the one hand, methane addition can result in the decease of shock intensity inside the tube, thereby lowering the temperature of the combustible mixture; on the other hand, the hydrogen-methane mixture has the higher minimum ignition energy than that of pure hydrogen. Besides, 2.5% methane addition can increase the initial ignition time, weaken the flame intensity and reduce the flame propagation velocity relative to tube wall inside the tube. Moreover, for cases with 2.5% methane addition, the complete flame throughout the tube is formed closer to the back end of the tube. When the self-sustained flame exits from the tube, the maximum overpressure in a confined space increases with 2.5% methane addition.  相似文献   

15.
Experimental and analytical study of burning hydrogen-air mixtures with 12, 13, and 15 vol% hydrogen concentrations in channels with central and peripheral ignition was performed. Flame propagation speeds were determined by shadow and infrared high-speed imaging in the transverse and longitudinal directions, respectively. It was found that the increase in the flame front speed during the peripheral ignition reaches up to 1.7 times compared to the central ignition depending on mixture content. The pressure growth rate was examined in a closed channel. It was estimated that the time to reach a maximum pressure is 1.1 times less in the case or peripheral ignition than the central one. An analytical model was formed to describe the dynamics of the flame front in both cases. The model of a “reversed finger-flame” generated by a peripheral ignition was presented. The obtained results could be used in designing hydrogen-fueled combustible engines with the reduced knock-effect.  相似文献   

16.
Hydrogen/methane buoyant fires with various hydrogen volume fractions ranging from 0% to 20% were numerically studied in this paper. The modified eddy dissipation concept combustion model for multi-fuels in the large eddy simulation (LES) framework was employed for combustion, and especially the infinitely fast rate based on “global” concept was improved. Combined with the weighted sum of gray gas model for emission/absorption coefficient, the finite volume discrete ordinates model was used to compute the radiative heat transfer. The predicted centerline temperature, velocity, and flame height are in good consistence with the measured data. Furthermore, the detailed analysis was conducted on the dependency of the parameters such as centerline temperature and velocity, flame height, and soot volume fraction on hydrogen volume concentration.  相似文献   

17.
Buried pipelines are one method of conservation transfer for widely used gases such as natural gas and hydrogen. The safety of these pipelines is of great importance because of the potential leakage risks posed by the flammable gas and the special properties of the hydrogen mixture. Estimating the leakage behavior and quantifying the diffusion range outside the pipeline are important but challenging goals due to the hydrogen mixture and presence of soil. This study provides essential information about the diffusion behavior and concentration distribution of underground hydrogen and natural gas mixture leakages. Therefore, a large-scale experimental system was developed to simulate high-pressure leaks of hydrogen mixture natural gas from small holes in three different directions from a pipeline buried in soil. The diffusion of hydrogen-doped natural gas in soil was experimentally measured under different conditions, such as different hydrogen mixture ratios, release pressures, and leakage directions. The experimental results verified the applicability of the gas leakage mass flow model, with an error of 6.85%. When a larger proportion of a single component was present in the hydrogen-doped natural gas, the leakage pressure showed a greater diffusion range. In addition, the diffusion range of hydrogen-doped natural gas in the leakage direction was larger at 3 o'clock than that at 12 o'clock. The hydrogen blend carried methane and diffused, which shortened the methane saturation time. Moreover, a quantitative relationship between the concentration of hydrogen-doped natural gas and the diffusion distance over which the hydrogen-doped natural gas reached the lower limit of the explosion was obtained by quantitative analysis of the experimental data.  相似文献   

18.
This paper discusses the fractal structure of a hydrodynamically unstable flame with the background of the risk assessment of an explosion hazard. An accidental gas explosion usually occurs in a large-scale quiescent combustible mixture. A spherical flame outwardly propagates from the ignition point, and the flame accelerates owing to hydrodynamic instability. From the viewpoint of risk assessment, it is essential to consider such an increase in flame speed because the damage of an explosion is significantly influenced by the flame speed. Because hydrodynamically unstable flames have fractal structures and the flame area (and hence the flame speed) can be estimated using the fractal dimension, it is important to know the fractal dimension of the flame under the condition of a potential accidental explosion. Three methods (a box-counting method, a Fourier analysis, and a method based on the scale dependence of the flame speed) are tested to calculate the fractal dimension of a purely hydrodynamically unstable flame that is neutral in terms of diffusive-thermal instability. These methods are applied to the numerical solution of the Sivashinsky equation, but they can be also used to the result of an ordinary CFD calculation. The fractal structure of a purely diffusive-thermally unstable flame, which is neutral in terms of hydrodynamic instability, is also studied for comparison. The results show that all the three methods yield consistent fractal dimensions for the hydrodynamically unstable flame, whereas the diffusive-thermally unstable flame does not exhibit fractal characters. This is because the former flame has a hierarchical structure, whereas wrinkles of a specific wavelength mainly grow in the latter flame. The dependence of the fractal dimension on the thermal expansion ratio is also discussed.  相似文献   

19.
微细通道内可燃气体预混燃烧实验与微型发动机燃烧方案   总被引:10,自引:0,他引:10  
针对微型涡轮气体发动机的研制现状,讨论了微细通道稳定燃烧面临的难题。开展了微细通道内燃气与空气预混燃烧的火焰稳定性实验研究,通过测试获得了氢气和乙炔燃烧的着火浓度极限。结果表明:微细通道内可燃气体与空气的预混燃烧具有可行性,但可燃浓度范围明显缩小;采用增压燃烧,可以扩大其可燃浓度范围,提高燃烧稳定性;与大通道相比,微细通道不易发生回火,但容易发生火焰吹熄,而燃气浓度较高的混合气流相对不易被吹熄,燃烧稳定性较好。  相似文献   

20.
One of the main benefits sought by including hydrogen in the alternative fuels mix is emissions reduction - eventually by 100%. However, in the near term, there is a very significant cost differential between fossil fuels and hydrogen. Hythane (a blend of hydrogen and natural gas) can act as a viable next step on the path to an ultimate hydrogen economy as a fuel blend consisting of 8-30% hydrogen in methane can reduce emissions while not requiring significant changes in existing infrastructure.This work seeks to evaluate whether hythane may be safer than both hydrogen and methane under certain conditions. This is due to the fact hythane combines the positive safety properties of hydrogen (strong buoyancy, high diffusivity) and methane (much lower flame speeds and narrower flammability limits as compared to hydrogen). For this purpose, several different mixture compositions (e.g. 8%, 20% and 30% hydrogen) are considered. The evaluation of (a) dispersion characteristics (which are more positive than for methane), (b) combustion characteristics (which are closer to methane than hydrogen), and (c) Combined dispersion + explosion risk is performed. This risk is expected to be comparable to that of pure methane, possibly lower in some situations, and definitely lower than for pure hydrogen.The work is performed using the CFD software FLACS that has been well-validated for safety studies of both natural gas/methane and hydrogen systems. The first part of the work will involve validating the flame speeds and flammability limits predicted by FLACS against values available in literature. The next part of the work involves validating the overpressures predicted by the CFD tool for combustion of premixed mixtures of methane and hydrogen with air against available experimental data. In the end, practical systems such as vehicular tunnels, garages, etc. is used to demonstrate positive safety benefits of hythane with comparisons to similar simulations for both hydrogen and methane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号