首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Low-grade energy is widespread. However, it cannot be utilized with high thermal efficiency directly. Following the principle of thermal energy cascade utilization, a thermoacoustic engine (TE) with a new regenerator that can be driven by multiple heat sources at different temperature levels is proposed. Taking a regenerator that utilizes heat sources at two temperatures as an example, theoretical research has been conducted on a traveling-wave TE with the new regenerator to predict its performance. Experimental verification is also done to demonstrate the benefits of the new regenerator. Results indicate that a TE with the new regenerator utilizing additional heat at a lower temperature experiences an increase in pressure ratio, acoustic power, efficiency, and exergy efficiency with proper heat input at an appropriate temperature at the mid-heater. A regenerator that uses multi-temperature heat sources can provide a means of recovering lower grade heat.  相似文献   

2.
A bench consisting of a pulse tube refrigerator driven by a standing‐wave thermoacoustic prime mover has been set up to study the relationship among stack, regenerator and working fluids. The stack of the thermoacoustic prime mover is packed with dense‐mesh wire screens because of their low cost and easy manufacture. The effect of the packing factor in the stack on onset temperature, refrigeration temperature and input power is explored. The optimum packing factor of 1.15 pieces per millimeter has been found experimentally, which supplies an empirical value to satisfy a compromise for enhancing thermoacoustic effect, decreasing heat conduction and fluid‐friction losses along the stack. The pulse tube cooler driven by the thermoacoustic prime mover is able to obtain refrigeration temperatures as low as 138 and 196K with helium and nitrogen, respectively. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Stirling engine has become preferable for high attention towards the use of alternate renewable energy resources like biomass and solar energy. Stirling engine is the main component of dish Stirling system in thermal power generation sector. Stirling engine is an externally heating engine, which theoretical efficiency is as high as Carnot cycle's, but actual ones are always far below compared with the Carnot efficiency. A number of studies have been done on multi-objective optimization to improve the design of Stirling engine. In the current study, a multi-objective optimization method, which is a combination of multiple optimization algorithms including differential evolution, genetic algorithm and adaptive simulated annealing, was proposed. This method is an attempt to generalize and improve the robustness and diversity with above three kinds of population based meta-heuristic optimization techniques. The analogous interpreter was linked and interchanged to find the best global optimal solution for Stirling engine performance optimization. It decreases the chance of convergence at a local minimum by powering from the fact that these three algorithms run parallel and members from each population and technique are swapped. The optimization considers five decision variables, including engine frequency, mean effective pressure, temperature of heating source, number of wires in regenerator matrix, and the wire diameter of regenerator, as multiple objectives. The Pareto optimal frontier was obtained and a final optimal solution was also selected by using various multi-criteria decision making methods including techniques for Order of Preference by Similarity to Ideal Solution and Simple Additive Weighting. The multi-objective optimization indicated a way for GPU-3 Stirling engine to obtain an output power of more than 3 kW and an increase by 5% in thermal efficiency with significant decrease in power loss due to flow resistance.  相似文献   

4.
Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerator with spherical particles, were numerically analysed to evaluate the heat transfer and pressure drop and to suggest the parameter for designing heat regenerator. It takes about 7 h for the steady state in the thermal flow of regenerator, where heat absorption of regenerative particle is concurrent with heat desorption. The regenerative particle experiences small temperature fluctuation below 10 K during the reversing process. The thermal flow in heat regenerator varies with inlet velocity of exhaust gas and air, configuration of regenerator and diameter of regenerative particle. As the gas velocity increases with decreasing the cross-sectional area of the regenerator, the heat transfer between gas and particle enhances and pressure losses increase. As particle diameter decreases, the air is preheated higher and the exhaust gases are cooled lower with the increase of pressure losses. At the same exhaust gases temperature at the regenerator outlet, the regenerator length need to be linearly increased with inlet Reynolds number of exhaust gases. It is confirmed that inlet Reynolds number of exhaust gases should be introduced as a regenerator design parameter. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
A simplified computational method for studying the heat transfer characteristics of parallel plate thermoacoustic heat exchangers is presented. The model integrates the thermoacoustic equations of the standard linear theory into an energy balance-based numerical calculus scheme. Details of the time-averaged temperature and heat flux density distributions within a representative domain of the heat exchangers and adjoining stack are given. The effect of operation conditions and geometrical parameters on the heat exchanger performance is investigated and main conclusions relevant for HX design are drawn as far as fin length, fin spacing, blockage ratio, gas and secondary fluid-side heat transfer coefficients are concerned. Most relevant is that the fin length and spacing affect in conjunction the heat exchanger behavior and have to be simultaneously optimized to minimize thermal losses localized at the HX-stack junctions. Model predictions fit experimental data found in literature within 36% and 49% respectively at moderate and high acoustic Reynolds numbers.  相似文献   

6.
7.
丝网热声板叠的最佳填充率   总被引:7,自引:2,他引:5  
自行研制了热声驱动脉管制冷机实验台,着重研究了热声机械中热声转换的关键部件丝网板叠的填充率对热声驱动脉管制冷机起振温度,制冷温度和加热功率等的影响,并通过实验发现了丝网板叠的最佳填充率,以氮和氮作工质,分别获得了196K和138K的无负荷制冷制度,达到国际先进水平,为热声机械的实用化奠定了基础。  相似文献   

8.
To explore the effects of Gedeon streaming on the onset and damping behaviors, infrared imaging is applied for the first time in a traveling-wave thermoacoustic engine to observe the temperature evolution of the regenerator. Under conditions of with and without Gedeon streaming, the temperature distribution differences of the regenerator in the onset and damping processes are compared and analyzed. Based on the visual images, the dimensionless temperature distribution reveals some phenomena that have not been revealed by traditional measurement methods. Analysis of the thermal and mass flows is made to further understand the mechanism of the onset and damping processes.  相似文献   

9.
The key component of a Stirling engine is its regenerative heat exchanger. This device is subject to losses due to dissipation arising from the flow through the regenerator as well as due to imperfect heat transfer between the regenerator material and the gas. The magnitudes of these losses are characterized by the Stanton number St and the Fanning friction factor f, respectively. Using available data for the ratio St/f, results are found for the Carnot efficiency and the power output of the regenerator. They depend on the conductance and on the ratio of pressures at the two sides of the regenerator. Optimum results for efficiency and power output of the regenerator are derived in the limit of zero Mach number. The results are applied to the Stirling engine. The efficiency and the power output of the engine are found for given amplitude of the compression piston. Optimization with respect to regenerator conductance and piston phase angle leads to a maximum possible value of the power output. Under optimal conditions, the Carnot efficiency just below this maximum is close to 100%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In consideration of geometric parameters, several researches have already optimized the thermal efficiency of the cylindrical cavity receiver. However, most of the optimal results have been achieved at a fixed solar radiation. At different direct normal irradiance (DNI), any single optimal result may not be suitable enough for different regions over the world. This study constructed a 3-D numerical model of cylindrical cavity receiver with DNI variation. In the model of a cylindrical cavity receiver containing a helical pipe, the heat losses of the cavity and heat transfer of working medium were also taken into account. The simulation results show that for a particular DNI in the range of 400 W/m2 to 800 W/m2, there exists a best design for achieving a highest thermal efficiency of the cavity receiver. Besides, for a receiver in constant geometric parameters, the total heat losses increases dramatically with the DNI increasing in that range, as well as the temperature of the working medium. The thermal efficiency presented a different variation tendency with the heat losses, which is 2.45% as a minimum decline. In summary, this paper proposed an optimization method in the form of a bunch of fitting curves which could be applied to receiver design in different DNI regions, with comparatively appropriate thermal performances.  相似文献   

11.
The proposal of a novel thermoacoustic regenerator using multi-temperature heat sources (MTHS) makes it possible to utilize lower-grade energy and keep relatively high efficiency in a thermoacoustic engine (TE) simultaneously. Based on thermodynamic laws combined with linear thermoacoustic theory, the time-averaged total power, enthalpy flux, acoustic power, entropy flux, and exergy flux in each component are derived and calculated to further understand the mechanism of a TE with the regenerator using two-temperature heat sources (TTHS). The comparison of the energy flows between the traditional TEs and those utilizing TTHS shows that the improvement of the temperature gradient in the regenerator by adding a mid-heater with appropriate heating power can increase the acoustic power and efficiency of a TE.  相似文献   

12.
A helium filled orifice type pulse tube refrigerator (OPTR) was designed, built and operated to provide cryogenic cooling. The OTPR is a traveling wave thermoacoustic refrigerator that operates on a modified reverse Stirling cycle. The experimental studies are carried out to characterize the performance of the OPTR at various values of the mean pressure of helium (0.35 MPa–2.2 MPa), amplitudes of pressure oscillations, frequencies of operation and sizes of orifice opening. A detailed time-dependent axisymmetric computational fluid dynamic (CFD) model of the OPTR is also developed to predict its performance. In the CFD model, the continuity, momentum and energy equations are solved for both the refrigerant gas (helium) and the porous media regions (the regenerator and the three heat-exchangers) in the OPTR. An improved representation of heat transfer in the porous media is achieved by employing a thermal non-equilibrium model to couple the gas and solid (porous media) energy equations. The computational results are compared with specific experimental results to validate the numerical model. The model predictions show better temporal comparisons with the experimental results when the effects of wall thicknesses and natural convective losses of the various components of the OPTR to the surroundings are included in the model.  相似文献   

13.
Solar-dish Brayton system driven by the hybrid of fossil fuel and solar energy is characterized by continuously stable operation, simplified hybridization, low system costs and high thermal efficiency. In order to enable the system to operate with its highest capabilities, a thermodynamic multi-objective optimization was performed in this study based on maximum power output, thermal efficiency and ecological performance. A thermodynamic model was developed to obtain the dimensionless power output, thermal efficiency and ecological performance, in which the imperfect performance of parabolic dish solar collector, the external irreversibility of Brayton heat engine and the conductive thermal bridging loss were considered. The combination of NSGA-II algorithm and decision makings was used to realize multi-objective optimization, where the temperatures of absorber, cooling water and working fluid, the effectiveness of hot-side heat exchanger, cold-side heat exchanger and regenerator were considered as optimization variables. Using the decision makings of Shannon Entropy, LINMAP and TOPSIS, the final optimal solutions were chosen from the Pareto frontier obtained by NSGA-II. By comparing the deviation index of each final optimal solution from the ideal solution, it is shown that the multi-objective optimization can lead to a more desirable design compared to the single-objective optimizations, and the final optimal solution selected by TOPSIS decision making presents superior performance. Moreover, the fitted curve between the optimal power output, thermal efficiency and ecological performance derived from Pareto frontier is obtained for better insight into the optimal design of the system. The sensitivity analysis shows that the optimal system performance is strongly dependent on the temperatures of absorber, cooling water and working fluid, and the effectiveness of regenerator. The results of this work offer benefits for related theoretic research and basis for solar energy industry.  相似文献   

14.
邱浩  王树林  肖刚 《太阳能学报》2022,43(4):277-282
为获得斯特林发动机的动态特性和优化方案,将损失机制和压力梯度耦合进控制方程中,提出一维瞬态斯特林循环分析模型及分析方法,并针对GPU-3斯特林发动机进行模型验证和特性分析。模型的指示功率相对误差平均值约为4.8%,热效率的相对误差小于1%。当氦气工质在热源温度为977 K、平均压强为2.76 MPa时,输出功率随转速的升高先增大后减小,同时流动阻力损失由0.174 kW上升至3.179 kW,最佳运行转速范围约2500~3000 r/min。最大的3项损失分别为流动阻力损失、配气活塞穿梭传热损失和有限速度压力损失。回热器压降占总压降的90%以上,瞬态值高达188 kPa,减小回热器压降损失是减小流动阻力损失的有效途径。  相似文献   

15.
Optimal configuration design for plate heat exchangers   总被引:1,自引:0,他引:1  
A screening method is presented for selecting optimal configurations for plate heat exchangers. The optimization problem is formulated as the minimization of the heat transfer area, subject to constraints on the number of channels, pressure drops, flow velocities and thermal effectiveness, as well as the exchanger thermal and hydraulic models. The configuration is defined by six parameters, which are as follows: number of channels, numbers of passes on each side, fluid locations, feed relative location and type of channel flow. The proposed method relies on a structured search procedure where the constraints are successively applied to eliminate infeasible and sub-optimal solutions. The method can be also used for enumerating the feasible region of the problem; thus any objective function can be used. Examples show that the screening method is able to successfully determine the set of optimal configurations with a very reduced number of exchanger evaluations. Approximately 5% of the pressure drop and velocity calculations and 1% of the thermal simulations are required when compared to an exhaustive enumeration procedure. An optimization example is presented with a detailed sensitivity analysis that illustrates the application and performance of the screening method.  相似文献   

16.
《Applied Energy》2005,82(2):181-195
In this paper, in the viewpoint of finite-time thermodynamics and entropy-generation minimization are employed. The analytical formulae relating the power and pressure-ratio are derived assuming heat-resistance losses in the four heat-exchangers (hot- and cold-side heat exchangers, the intercooler and the regenerator), and the effect of the finite thermal-capacity rate of the heat reservoirs. The power optimization is performed by searching the optimum heat-conductance distributions among the four heat-exchangers for a fixed total heat-exchanger inventory, and by searching for the optimum intercooling pressure-ratio. When the optimization is performed with respect to the total pressure-ratio of the cycle, the maximum power is maximized twice and a ‘double-maximum’ power is obtained. When the optimization is performed with respect to the thermal capacitance rate ratio between the working fluid and the heat reservoir, the double-maximum power is maximized again and a thrice-maximum power is obtained. The effects of the heat reservoir’s inlet-temperature ratio and the total heat-exchanger inventory on the optimal performance of the cycle are analyzed by numerical examples.  相似文献   

17.
An optimal mutual configuration of coils and cooling ducts for the effective cooling of a dry-type transformer is presented in this paper based on the method developed by the author. In the optimization procedure, a computational fluid dynamics (CFD) and a genetic algorithm are combined to optimize the diameters of both the ducts and the coils. The method was applied to cool a special dry-type unit to minimize the hot-spot temperature of the windings. These simulations were performed using various sets of optimized shape parameters and copper mass constraints in a real 3-D transformer geometry. The objective function value is computed using a CFD model that accounts for all three heat transfer modes. In the proposed model, the thermal properties of the coils and core are treated as anisotropic and temperature-dependent quantities, and the power losses are treated as heat sources and are computed based on the coupled CFD-electromagnetic (EMAG) model. Due to a shape change, both coil properties and power losses vary with each generated coil configuration. The results show that the nonuniform positioning of the wires and air ducts and an optimal splitting of high- and low-voltage coils can significantly lower the hot-spot temperature and improve the heat dissipation in comparison with current transformer designs.  相似文献   

18.
提出了回热式布雷顿-两平行逆布雷顿联合循环模型。对该模型进行了第一定律性能分析与优化,得出了该循环最优效率和最优比功的表达式,分析了回热度及其他参数对联合循环最优热效率和最优比功的影响。分析表明,增加回热器后能提高联合循环的热效率,但此时联合循环的输出比功较小。  相似文献   

19.
Refrigeration by an active magnetic regenerative system (AMR) is potentially more attractive, as compared to conventional techniques. Indeed, devices based upon an AMR cycle are more efficient, compact, environment‐friendly and can operate over a broad range of temperatures. In this paper, attention is focused to the near room‐temperature range. On the other hand, however, the AMR cycle poses a variety of complex problems, in terms of fluid dynamics, heat transfer and magnetic field. In order to identify the optimal operational parameters, the design and optimization of a magnetic refrigeration system can be supported by modelling. In this paper, a dimensionless approach was adopted to simulate an AMR cycle following a Brayton regenerative cycle. In the simulation, the temperature range that has been explored is 260 – 280 K and 275 – 295 K. The heat transfer mediums are, respectively, water–glycol mixture (50% by weight) and pure water. The Gd0.8Dy0.2 alloy and pure Gd have been chosen as constituent material for the regenerator of the AMR cycle. With this model, the influence of the different parameters on cycle efficiency has been analysed. In particular, the study has been focused on the influence of the secondary fluid properties, magnetic material particle diameter, fluid blow time, secondary fluid mass flow rate, regenerator geometry and effect of axial thermal conduction. The model enables to find optimal dimensionless numbers in order to maximize the cycle performances. The results can be extended to widely different situations and therefore can be easily employed for the design and the optimization of new experimental prototypes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
以蜂窝体蓄热室的结构优化为研究目标,模型采用的多目标优化以蜂窝蓄热体的温度效率和热回收率作为目标函数.,以空气流速,换向时间和蜂窝蓄热体的高度为优化变量,模型的计算采用线性加权法,对蜂窝体蓄热室的主要结构参数进行了优化设计,以保证气体在满足换热强度条件下,尽量减小阻力损失。并开发了蜂窝体蓄热室结构优化的软件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号