首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
锂离子电池热失控是由多种因素耦合而导致的结果,得到影响锂离子电池热失控影响因素的重要性程度对于提高电池安全性具有极大意义。对此,针对针刺导致的锂离子电池热失控,利用COMSOL软件仿真分析了不同针刺位置、速度、直径、SOC(state of charge)对锂离子电池单体针刺热失控影响,得到对单体电池热失控影响的重要因素。基于单体针刺热失控仿真结果,以4个锂离子电池单体组成的模组为研究对象,利用单因素仿真试验分析不同钢针直径R、电池SOC以及针刺电池个数N对电池模组热扩散影响;基于此,本文分析了针刺电池个数N、钢针直径R及电池SOC耦合作用热失控的正交试验。结果表明:相对于针刺位置、针刺速度对电池单体热失控影响,电池SOC和针刺直径R对电池单体热失控影响较为显著,且针刺直径R越小,单体电池热失控越剧烈;电池SOC越大,热失控时电池温度分布越不均匀;针刺直径R越大,模组热扩散需要时间越长;当SOC在100%~85%范围内时,模组内各电池单体的热失控最高温度变化较为明显;针刺电池个数N越大,模组热失控越剧烈,但位于模组中间位置的电池热失控最高温度有所降低。针刺电池个数N、SOC、针刺直径R对电池模组热失控温度和扩散时间的影响程度主次顺序为:N>R>SOC*R>SOC*N>N*R>SOC,其中,针刺电池个数N对电池模组热扩散影响最显著,且不同因素间的交互作用不容忽视。本工作为提高电池的安全性及电池设计提供了参考依据。  相似文献   

2.
动力电池热失控扩展阻隔是抑制大规模电池火灾的重要途径。本文采用环氧树脂板(ERB)阻隔锂离子电池的热失控扩展,分析不同厚度ERB对串联及并联模组的热失控阻隔作用。结果表明,ERB可降低热失控电池模组的最高温度,减轻电池热失控剧烈程度,避免喷射火焰的产生;对于并联的电池模组,采用2 mmERB的锂电池模组的电池间热失控扩展平均时间间隔为198 s,为无ERB时的2.29倍,采用4 mm ERB时平均时间间隔延长至无ERB时的5.57倍;对于串联的电池模组,采用2 mm ERB时电池热失控扩展平均时间间隔延长至无ERB锂电池模组的2.09倍,采用4 mm ERB时可完全阻止热失控扩展;研究发现并联的电池模组相对于串联模组更容易扩展,其原因为并联模组单个电池热失控时会形成电回路并产生焦耳热。  相似文献   

3.
为研究磷酸铁锂离子电池在泄压阀打开之后,释放的气体在模组中扩散行为,本文基于实际100%SOC磷酸铁锂离子电池模组尺寸建立1:1几何模型,模拟电池模组内部电池发生热失控、泄压阀打开及释放气体的扩散行为;通过FDS软件对其进行仿真研究,分析磷酸铁锂离子电池在热失控时释放H2、CO、CH4和CO2气体的扩散规律.研究结果表明:磷酸铁锂离子电池在泄压阀打开后,在8s内气体充满整个电池模组箱内部上侧,在电池模组箱上方内部的温度维持在55℃;在30 s之后,模组箱内气体空间分布逐渐趋于平衡,不随时间的变化而发生变化.在释放的气体中CO2约占30%,在4种气体中占比最大.本文的研究成果可为磷酸铁锂离子电池模组的设计以及气体探测系统的设计提供参考依据.  相似文献   

4.
本文依据单位面积制冷量和能效值β两个参数,选用TEC1-12711T150作为电池模组的核心制冷元件;搭建了具有泡沫铜和石蜡复合传热结构的电池模组(3×5阵列)试验台;设计3组对照试验:自然对流方式、液冷方式和热电制冷方式,分别测试电池模组在不同换热方式、不同发热功率下的热特性,验证热电制冷技术在电池模组热管理方面的可行性。试验表明:单体电池发热功率为2 W时,热电制冷片(Thermoelectric cooler TEC)冷却方式下电池模组历时约1 280 S后可趋近稳定状态,且达到稳态时电池模组最高温度仅有31. 5℃,远低于液冷方式的44. 5℃。  相似文献   

5.
新能源汽车是满足“可持续发展”政策,实现“碳中和”的主要发展方向之一。随着电动汽车的逐步普及,车载锂离子动力电池的安全问题得到越来越多的关注,热滥用、电滥用、机械滥用等均会造成电池燃烧、爆炸,因此开展动力电池热失控抑制研究具有重要的现实意义。本工作搭建了电动客车用202 Ah磷酸铁锂锂离子电池箱试验平台,利用七氟丙烷对锂离子电池热失控的抑制作用,从灭火剂剂量、喷放时机、喷放方式三个方面,分析了七氟丙烷对锂离子电池组热失控的抑制作用、效果和对电池箱的保护作用。结果表明:选用1.8 kg剂量(喷放速率0.06 kg/s)的灭火剂七氟丙烷以双侧间隙开孔软管的喷放方式能够有效抑制热失控;85℃是磷酸铁锂锂离子电池保护的关键点,在保证裕度下设计了触发温度为80℃的电动客车用灭火系统,灭火前后电池性能未发生明显变化,灭火系统能够提供安全保障。本研究有助于为车用七氟丙烷灭火系统的研发提供试验依据,推动锂离子电池电动客车灭火装置的应用。  相似文献   

6.
锂离子电池作为目前电动汽车的主要能源电池,其在外界滥用条件下的热失控问题受到广泛关注,研究不同滥用下尤其是多种滥用共同作用下的电池热失控特性可有效提高电池使用安全性。本工作以车用50 Ah方型动力三元锂离子电池单体作为研究对象,利用大功率充放电循环仪和电加热装置,进行了1 C倍率过充、150 W局部过热及其共同作用下的电池热失控实验。对不同工况下热失控实验现象、质量损失、温度变化、升温速率变化、升温部位和电压变化等实验结果进行对比分析,结果表明:过充过热共同作用下电池热失控具有更大危险性,电池热失控时间比单一滥用减少约35%,热失控时电池SOC比过充减小约35%,电池电压会出现“持续上升—突降至零”现象。本研究可为车用三元锂离子电池热管理系统安全设计提供参考。  相似文献   

7.
随着新能源汽车的广泛使用,动力锂离子电池的热安全性问题日益突出。本文以Bernardi生热机理为基础,耦合不同物理量,分别从电化学-热耦合模型、电-热耦合模型和热滥用模型来介绍单体电池的热特性。由于电池能量密度的增加与行驶工况复杂程度的提高,动力锂离子电池容易发生热量堆积,甚至造成热失控,对此,文中梳理了商用动力电池包的常用冷却方式。最后,根据对影响电池模组安全性的热失控蔓延机理及实测结果,介绍了阻断单体及基本模块热失控传播的有效方法。  相似文献   

8.
电池热管理对电动汽车的安全和寿命至关重要。本文采用铝翅片铜管作为基础结构,设计一种结构紧凑、轻量型的18650型锂离子电池模组,采用基于PID原理的算法作为电动汽车空调系统电子膨胀阀的控制方案,实验研究R134a制冷剂直接气液两相流冷却电池模组的换热性能。结果表明:所提出的电池热管理系统能够快速响应温度的变化,并降低电池模组的温度。此外,当控制方案为动态温度PID算法时,电池模组以1 C倍率放电过程中电池之间的最大温差小于4℃,并且电池模组的最高温度低于36℃。  相似文献   

9.
风冷系统因结构简单、成本低等特点,在热管理系统中占据重要地位。目前常规的风冷热管理设计方法存在重复性工作多、设计时间长的缺点。本文提出空气流动风阻网格模型结合热力学模型仿真的设计方法,先采用空气流动风阻网格模型获得优化的电池结构,再采用热力学模型进行仿真求解,获得优化的电池模组的流场和温度场分布特性。仿真结果验证了优化结构的准确性。优化结果表明,“C”字形结构更有利于提升模组内单体电池冷却效果的一致性,并且优化后的“C”字形结构进一步提升了电池模组内单体电池温度场的一致性。此外,计算结果发现模组内空气流动方向为上进下出时可进一步降低模组内单体电池的最高温度,提升单体电池温度场的一致性。  相似文献   

10.
徐亮 《太阳能学报》2022,43(5):478-483
面向锂电池储能电站的安全需求,遵循“预防为主、防消结合”的原则,设计锂电池储能电站防消一体化系统,实现数据融合和智能诊断,建立早期预警、后期灭火防护的完整系统;参照实际储能预制舱结构,搭建储能预制舱试验环境,开展锂电池单体及模组热失控及灭火试验,结果表明:防消一体化系统控制策略通过安全预警、防护、消防系统的分级工作,实现了火灾早期预警以及后期灭火防护,最大程度降低了电池热失控带来的危害;以细水雾作为灭火介质能在短时间内熄灭磷酸铁锂电池火灾,并能有效防止电池复燃。  相似文献   

11.
简述了电动汽车锂离子动力电池热失控蔓延机理、建模与抑制技术的最新研究进展。为了满足汽车高能量的要求,需要动力电池进行串并联成组来提供动力。电池组成组安全问题成为电动汽车大规模应用的重要技术问题。电池组中的某一个电池单体发生热失控后产生大量热,导致周围电池单体受热产生热失控。因而,电池组成组安全问题的重要关注点是电池组内的热失控蔓延问题。本文对锂离子电池热失控蔓延问题的国内外研究进展进行了综述,分析了对于不同种类锂离子动力电池影响其热失控蔓延特性的主要因素。总结了文献中的热失控蔓延建模方法,并指出了已有方法的不足。从电池系统热安全管理的角度,阐述并分析了热失控蔓延防控技术的研究成果与方向。最后对锂离子电池热失控蔓延研究进行了展望。  相似文献   

12.
It is a promising cooling strategy to use the heat pipe for the Li-ion battery module, which can maintain the temperature of the battery module properly and prevent high temperature, triggering the thermal runaway among adjacent batteries. In this study, the thermal runaway model is simulated through the internal short circuit, which couples with Volume of Fluid (VOF) model of the heat pipe cooling and solves in ANSYS FLUENT to realize the heat and mass transfer between batteries and heat pipes. A user-defined function (UDF) code including mass source and energy source is used to calculate the heat and mass transfer in VOF model during the thermal runaway process. Numerical simulations are adopted to probe thermal runaway processes of a single battery under different operation conditions and the thermal runaway propagation from a battery to adjacent batteries. It is concluded that the heat pipe cooling system cannot prevent the thermal runaway of a single battery, but it can prevent the thermal runaway propagation from a battery to adjacent batteries.  相似文献   

13.
动力电池是新能源汽车关键部件,为进一步探究其热失控机理及影响因素,总结热失控发展过程,利用COMSOL软件构建锂离子电池单体模型,结合仿真实验结果详细分析其影响因素,并提出一款利用隔热罩、隔热盖板、隔热底座和可滑动扩容盒延缓热失控效果的可延缓热失控的汽车电池包。研究结果表明:热失控过程大致分为加热阶段、喷射和燃烧阶段、熄灭阶段,受4种副反应产热影响;在超过445.08 K的高温环境下,长时间工作的锂离子电池易发生热失控,失控热源关键在正极活性材料与电解液分解反应;当电池实际温度超过500 K时,温度若无法及时控制将导致火灾事故发生;同时,对流传热系数越高,电池温度变化越快;初始温度越高,热失控可能性越大。  相似文献   

14.
日本航空公司的JA829J次航班的蓄电池燃烧事故,是一起典型的由内短路引发的锂离子蓄电池热失控在电池模块内部的单体电池之间相互传递从而导致连锁反应的安全事故.本文通过对这起热失控引发的安全事故进行案例分析来揭示热失控的典型特征以及关键性的影响因素,针对这起事故暴露出的问题提出改善大型锂离子动力蓄电池模块安全性的相关建议.  相似文献   

15.
锂离子电池在发生针刺之后会造成内部短路,进而产生大量热量和浓烟以至引发热失控。本文通过模拟实验剖析圆柱型磷酸铁锂电池针刺后的内部结构,结合理论分析探究针刺热失控产热机理。以自行设计搭建的磷酸铁锂电池针刺热失控实验平台为基础,在初始20℃室温下采用Φ5 mm的钨钢针刺穿电池,观测电池的热失控发展情况以及电池电压、表面温升变化规律。根据实验结果得到以下结论:①针刺对圆柱型磷酸铁锂电池造成的热失控剧烈情况带有随机性;②电池电压在针刺后下降至0V,若破坏过程中电池内部热反应气体泄漏甚至发生爆炸则电压下降更迅速;③电池温度在被刺破后迅速上升,其温升趋势总体随破坏程度增加而加快。综合来看,针刺对磷酸铁锂电池的损坏是不可逆且通常会并发热失控,因此建议在设计电池结构时应当充分考虑防针刺及对电池进行额外保护。  相似文献   

16.
在众多储能技术中,锂离子电池以其能量密度大、能量转换效率高、循环寿命长、应用范围广、对环境友好等优势,成为当前最具应用前景的电力系统电池储能技术之一。但现有锂离子电池体系无法从本质上保证其安全性,在使用过程中具有发生热失控乃至燃烧、爆炸等安全事故的风险。本文就锂离子电池的热失控机理、电池本体的安全设计、安全预警、电池组热失控起火的阻燃装置以及消防安全的研究进展进行了综述。  相似文献   

17.
Temperature affects the performance of electric vehicle battery. To solve this problem, micro heat pipe arrays are utilized in a thermal management system that cools and heats battery modules. In the present study, the heat generation of a battery module during a charge‐discharge cycle under a constant current of 36 A (2C) was computed. Then, the cooling area of the condenser was calculated and experimentally validated. At rates of 1C and 2C, the thermal management system effectively reduced the temperature of the module to less than 40°C, and the temperature difference was controlled less than 5°C between battery surfaces of the module. A heating plate with 30‐W power effectively improved charge performance at low temperature within a short heating time and with uniform temperature distribution. Charge capacity obviously increased after heating when battery temperature was below 0°C. This study presents a new way to enhance the stability and safety of a battery module during the continuous charge‐discharge cycle at high temperatures and low temperatures accordingly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号