首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Ground heat losses from solar ponds are modelled numerically for various perimeter insulation strategies and several solar pond sizes. The numerical simulations are steady state calculations of heat loss from a circular or square pond to a heat sink at the outer boundaries of an earth volume that surrounds the pond on the bottom and sides. Simulation results indicate that insulation on top of the ground around the pond perimeter is rather ineffective in reducing heat loss, and that uninsulated sloping side walls are slightly more effective than insulated vertical side walls, except for very small ponds. The numerical results are used to derive coefficients for a semi-empirical equation describing ground heat loss as a function of pond area, pond perimeter and insulation strategy. Experimental results for ground heat loss and energy balance in the 400 m2 solar pond at the Ohio State University are reported. Analysis of this data, along with data on solar energy input, heat gain by the pond, heat loss through the gradient zone, and heat extraction from the pond yields a good energy balance. Numerical simulation of ground heat loss from this pond shows good agreement with the results obtained from pond measurements. Loss turns out to be large because of unexpectedly high values of earth thermal conductivity in the region.  相似文献   

2.
A passive method for the replenishment of salt in solar ponds is suggested, based on the natural circulation of water caused by density differences. Water, from a selected depth in the solar pond, is passed through a salt bed in an adjacent tank, where its salinity is increased before it is returned to the bottom region of the solar pond. The difference between the densities, at the points of intake and outlet, provide the driving force for the natural circulation. Careful system design ensures that this circulation will transport enough salt to the bottom region of the pond to compensate for its upward diffusion in salt gradient solar ponds. This method negates the need for the pumping installation normally required for salt replenishment; and it provides a simple, self-regulating, and reliable method for density control in the bottom region of solar ponds.  相似文献   

3.
A one-dimensional transient mathematical model is used for the study of the salt diffusion and stability of the density gradient in a solar pond. A finite difference method with a diffusion coefficient dependent on both temperature and salt concentration is used to solve the salt diffusion equation. On the basis of simple considerations we analyze the influence of the salinity-gradient thickness on the useful energy which can be withdrawn from the bottom layer of the solar pond. Finally some considerations on the effect of the velocity of injected brine in rising solar ponds are presented, making use of the Rayleigh analysis of the small perturbations in order to study the stability of the system.  相似文献   

4.
This communication deals with heat transfer in salt gradient solar ponds. Spatial variations in thermal properties have been considered and the resulting one dimensional heat conduction equation with a source term is solved explicitly to obtain a closed form mathematical expression for temperature distribution in the non-convecting zone of the solar pond. The present analysis is not restricted to any one typical variation but rather applicable to any variation profile in thermal properties.  相似文献   

5.
The development and construction details of an instrument to measure densities of the brine at different depths in a solar pond are presented and discussed. Using a vertically moving sampling tube, brine is drawn from the pond and then is fed to the bottom of a conical container in which a sealed conical glass vessel is fully submerged. The bouyancy force exerted by the water on the sealed glass vessel is measured by a system of cantilever beam and strain gauges. The output of the strain gauge bridge is proportional to the density of the fluid passing through the conical container. It is shown that this instrument can be effectively used to determine the salt concentration profile in salt gradient solar ponds.  相似文献   

6.
Solar pond with honeycomb surface insulation system   总被引:1,自引:0,他引:1  
A solar pond consisting of transparent compound honeycomb encapsulated with Teflon film and glass plates at the bottom and top surface respectively, floating on the body of a hot water reservoir is considered and analysed for the heat transfer processes in the system. A mathematical model is developed where the energy balance equation of the convective water is formulated by considering its capacity effects, various heat losses and solar energy gain through the surface insulation and is solved by the finite difference method. Transient rate of heat collection and storage characteristics are investigated. Explicit emphasis is laid on the effect of the thickness of the bottom encapsulation on the year-round thermal performance of the system and results seem to favour the minimum thickness. The annual average efficiency of the transparent honeycomb insulated solar pond is found to be higher than the conventional salt gradient pond by a factor of about 2.  相似文献   

7.
8.
The effects of following parameters on the performance of saturated solar ponds are studied: thickness of upper convective zone, nonconvective zone, and lower convective zone; starting time of the pond; water table depth below the pond; ground thermal conductivity; transmissivity of salt solution; incident radiation; ambient air temperature, humidity, and velocity; thermophysical properties of salt solution; pond bottom reflectivity; convection, evaporation, radiation, and ground heat losses; temperature and rate of heat removal; type of salt. Magnesium chloride and potassium nitrate salt ponds located at Madras (India) are considered for the parametric study. A comparison is also made with an unsaturated solar pond.  相似文献   

9.
Laboratory and field experiments were carried out along with numerical simulations in this paper to study the effects of porous media on thermal and salt diffusion of the solar ponds. From our laboratory experiments simulating heat transfer inside a solar pond, it is shown that the addition of porous media to the bottom of a solar pond could help enhance its heat insulation effect. The experiment on salt diffusion indicates that the upward diffusion of the salt is slowed down when the porous media are added, which helps maintain the salt gradient. Our field experiments on two small-scaled solar ponds indicate that when porous media are added, the temperature in the lower convective zone (LCZ) of the solar pond is increased. It is also found that the increase in turbidity is repressed by porous media during the replenishment of the salt to the LCZ. Thermal diffusivities and conductivities of brine layers with porous media such as pebble and slag were also respectively measured in this paper based on the unsteady heat conducting principles of a semi-infinite body. These measured thermal properties were then used in our numerical simulations on the effect of porous media on thermal performance of a solar pond. Our simulation results show that brine layer with porous media plays more positive role in heat insulation effect when thermal conductivity of the ground is big. On the other hand, when the ground has a very small thermal conductivity, the performance of solar pond might be deteriorated and total heat storage quantity of solar pond might be reduced by brine layer with porous media.  相似文献   

10.
A method for the maintenance of the stratification in the gradient zone of a salt gradient solar pond is presented. The method is unique for solar ponds in that it involves the injection of highly turbulent colummar jets into homogeneous convective zones. This contrasts with the more common practice of traversing the gradient zone with a disk-shaped diffuser while injecting fluid at low exit Froude numbers. Using turbulent jet theory which is well understood for columnar buoyant jets, the method allows a priori determination of the resulting salinity gradient with a reasonable level of confidence. The simple injector is easily constructed and deployed. Field data collected at the Alice Springs solar pond show that the technique can quickly remove internal convective zones as well as extend the top of the gradient into the surface layer, providing a valuable tool for the operators of solar ponds.  相似文献   

11.
Solar pond is an artificially constructed pond in which significant temperature rises are caused to occur in the lower regions by preventing convection. To prevent convection, salt water is used in the pond. Those ponds are called “salt gradient solar pond”. In the last 15 years, many salt gradient solar ponds varying in size from a few hundred to a few thousand square meters of surface area have been built in a number of countries. Nowadays, mini solar ponds are also being constructed for various thermal applications. In this work, various design of solar pond, prospects to improve performance, factors affecting performance, mode of heat extraction, theoretical simulation, measurement of parameters, economic analysis and its applications are reviewed.  相似文献   

12.
An experimental salt gradient solar pond having a surface area of 3.5 × 3.5 m2 and depth of 2 m has been built. Two covers, which are collapsible, have been used for reducing the thermal energy loses from the surface of the solar pond during the night and increasing the thermal efficiency of the pond solar energy harvesting during daytime. These covers having reflective properties can be rotated between 0° and 180° by an electric motor and they can be fixed at any angle automatically. A mathematical formulation which calculates the amount of the solar energy harvested by the covers has been developed and it is adapted into a mathematical model capable of giving the temporal temperature variation at any point inside or outside the pond at any time. From these calculations, hourly air and daily soil temperature values calculated from analytical functions are used. These analytic functions are derived by using the average hourly and daily temperature values for air and soil data obtained from the local meteorological station in Isparta region. The computational modeling has been carried out for the determination of the performance of insulated and uninsulated solar ponds having different sizes with or without covers and reflectors. Reflectors increase the performance of the solar ponds by about 25%. Finally, this model has been employed for the prediction of temperature variations of an experimental salt gradient solar pond. Numerical results are in good agreement with the experiments.  相似文献   

13.
Y.F. Wang  A. Akbarzadeh   《Solar Energy》1983,30(6):555-562
A linear relation between the efficiency of solar ponds and factor θdH which is the temperature difference between the pond bottom and the ambient divided by the average insolation is presented. This relation, which has been developed based on a steady state analysis provides valuable information on the relative importance of the parameters involved in the operation of solar ponds. It is found that the existence and the thickness of the top convective zone has a profound negative effect on the yield of solar ponds. The optimum thickness of the density gradient layer under various conditions is also presented. The effect of ground losses is discussed, and it is shown that for the case of wet soil, especially if the level of the underground water is high, the pond should be thermally insulated. It is also shown that the steady state analysis can predict with good accuracy the yearly average response of solar ponds under transient conditions.  相似文献   

14.
John R. Hull 《Solar Energy》1986,36(6):551-558
Ammonium salts have good potential for use in salt gradient solar ponds. The environmental problems associated with NaCl are eliminated by incorporating the salt discharge from the solar pond into the fertilizer cycle of an agricultural system. Thermophysical and optical properties of several ammonium salts are sufficiently close to those of NaCl to suggest that the thermal efficiency of solar ponds using ammonium salts should be equivalent to that of a NaCl pond. Ammonia outgassing is minimal, and algae growth is curtailed by precipitating soluble phosphates. Because fertilizer is purchased for the agricultural system, the cost of salt for the solar pond is determined by the real interest for holding the fertilizer in inventory. These economics make feasible several desirable maintenance schedules for the solar pond.  相似文献   

15.
Solar ponds combine solar energy collection with long-term storage and can provide reliable thermal energy at temperature ranges from 50 to 90 °C. A solar pond consists of three distinct zones. The first zone, which is located at the top of the pond and contains the less dense saltwater mixture, is the absorption and transmission region, also known as the upper convective zone (UCZ). The second zone, which contains a variation of saltwater densities increasing with depth, is the gradient zone or non-convective zone (NCZ). The last zone is the storage zone or lower convective zone (LCZ). In this region, the density is uniform and near saturation. The stability of a solar pond prototype was experimentally performed. The setup is composed of an acrylic tube with a hot plate emulating the solar thermal energy input. A study of various salinity gradients was performed based on the Stability Margin Number (SMN) criterion, which is used to satisfy the dynamic stability criterion. It was observed that erosion of the NCZ was accelerated due to mass diffusion and convection in the LCZ. It can be determined that for this prototype the density of the NCZ is greatly affected as the SMN reaches 1.5.  相似文献   

16.
A novel theoretical model, capable of giving the temporal temperature variation at any point inside or outside a non-insulated rectangular solar pond at any time, is presented. Incorporating the finite difference approach, the model makes use of one- and two-dimensional heat balances written on discrete regions in the brine and in the soil adjacent to the pond. These simultaneous equations are solved for the local temperatures, using a computer program. Values of hourly averaged air temperature and daily averaged soil temperature for the site were used as input parameters, and empirical functions for the time-dependence of these variables were incorporated into the theoretical model. It was found necessary to use this level of detail of the meteorological data for reliable predictions on the solar ponds. The model results are compared with measured results on an actual solar pond built in Cukurova, Turkey. The modelled and experimental temperature profiles are found to be in a very good agreement. The results indicate that the thickness of the salt gradient region of a solar pond should not be less than 1.3 m. Heat losses form the pond side-walls was found not to effect the performance of solar ponds when the surface area is greater than 100 m2.  相似文献   

17.
John R. Hull 《Solar Energy》1980,25(4):317-325
The membrane stratified solar pond is a body of liquid utilizing closely spaced transparent membranes to quench convective heat transfer in the top part of the pond. Membranes may be configured as horizontal sheets, vertical sheets or vertical tubes. Several suitable liquids and membrane materials are discussed. Conditions for suppression of convection are described, and transmission of solar radiation through the pond is discussed for each of the three membrane configurations. The steady state thermal efficiency is calculated for the horizontal sheet configuration. Thermal behavior is similar to that of salt gradient solar ponds, but much deeper heat storage layers are feasible. In some cases aquaculture farming may be suitable in the storage layer.  相似文献   

18.
A review of the development of the gel pond technology is presented. First, the emergence and growth of solar pond technology since the 1950's is described. The inherent problems encountered with the conventional salt gradient ponds are discussed, leading to the concept of the solar gel pond in which the salt gradient layer in the former is replaced by a transparent polymer gel. The major work in the first phase dealt with the experimental development of a polymer gel which met certain selection criteria. The criteria considered included transmissivity, stability of physical and chemical properties, high viscosity and other physical and optical properties. The gradual development of the polymer gel through an alternating process of testing and elimination and evaluation of relevant properties of the gel has been described. Modeling and optimization studies of the solar gel pond have been presented. Bansal and Kaushik's model for a salt gradient pond has been modified for a solar gel pond, and the results of the simulation are presented in a graphical form to serve as a quick reference for estimation of pond surface area, depth and flow rate for heat extraction depending on the extreme temperature required in the storage zone and the required heat load. Then, a cost-benefit economic analysis compares the economics of a solar gel pond with a conventional salt gradient pond. The construction of an experimental gel pond (18 m2) at The University of New Mexico is described, and the results of the study are summarized. Information on commercial scale ponds at Chamberino, New Mexico (110 m2), and in Albuquerque, New Mexico (400 m2), is provided. The review of the technology demonstrates the immense potential of the gel pond as a source of alternate energy for the years ahead.  相似文献   

19.
浊度和池底反射率对太阳池热性能的影响   总被引:2,自引:0,他引:2  
提出了同时考虑浊度和池底漫反射的太阳池辐射透射模型和热效率模型,计算分析了浊度和池底反射 率对太阳池热性能的综合影响。模拟计算表明,浊度一定时,热性能总是随着池底反射率的增大而降低。计算 还表明,存在一个临界池底反射率,当池底反射率小于临界值时,浊度的增大导致太阳池热性能的下降;当池 底反射率超过临界值时,一定范围内浊度的增加反而有利于太阳池热性能的提高;当池底反射率在临界值附近 时,浊度的变化对太阳池热性能的影响很小。通过模拟计算得出了典型情况下的临界池底反射率,在太阳池的 实际研究和设计中可供参考。  相似文献   

20.
A mathematical model with various parameters such as effective absorptivity-transmitivity product and total heat loss factor, including ground losses and angle of refraction, which are related to the physical properties and dimensions of the pond, is developed to study the thermal behaviour of salt gradient solar ponds at different operational conditions. A linear relation is found between the efficiency of the solar pond and the function (ΔT/H ). The convective heat loss, the heat loss to the atmosphere due to evaporation through the surface of the pond and ground heat losses have been accounted for in finding out the efficiency of the pond. The dependence of the thermal performance of the solar pond on the ground heat losses is investigated and minimized using low cost loose and insulating building materials such as dry dunes and, Mica powder and loose asbestos at the bottom of the pond. The ground heat losses are considerably reduced with the asbestos (loose) and the retention power of solar thermal energy of the pond increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号