首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
《工业建筑》2021,51(6):150-155
为研究螺旋锚基础的适用性,促进其在碎石土地基中的应用,在室内开展了重塑碎石土地基螺旋锚整模和半模轴向上拔静载荷试验。基于上拔荷载-位移关系曲线、碎石土体纵断面裂缝分布及形态等试验结果,分析碎石土中螺旋锚抗拔承载特性,以及锚盘对其承载性能的影响,研究螺旋锚抗拔承载机理。结果表明:浅埋于碎石土中的锚盘往往发生整体剪切破坏并且承载力具有弱化现象,而深埋锚盘主要发生上部土体局部剪切破坏进而变形逐渐增大;螺旋锚承载过程初期,锚盘上部碎石土被挤密,荷载与位移呈近似线性关系,随着荷载的增大,锚盘上部土体被压缩、剪切,导致变形不断增大,最终导致承载失效;锚盘数量越多、埋深越大,螺旋锚抗拔承载力越大、变形越小,增加埋深对承载力影响在小位移时即可充分发挥作用。因此,碎石土中螺旋锚属于一种深基础,锚盘与土体的相互作用是影响其承载力的主要因素。  相似文献   

2.
锚板基础因其具有良好的抗拔特性而广泛应用于各类岩土工程问题中。在不同密实程度砂土中采用不同几何形状的锚板进行小比尺拉拔模型试验,分析锚板型式及尺寸对上拔承载特性的影响。试验结果表明,相同直径和埋深比的螺旋锚与平板锚上拔承载特性无明显差别;相同埋深比时,直径为50 mm的锚板上拔承载力系数略小于直径为20mm锚板的上拔承载力系数,而其上拔破坏位移比明显高于小直径锚板。进一步根据破坏位移比与埋深比关系曲线确定中密及密砂中浅、深破坏模式的临界埋深比,同时结合已有试验结果假设两种破坏模式的滑裂面,利用极限平衡分析推导并给出两种破坏模式下上拔承载力公式;通过与41个拉拔试验数据进行比较,验证了所提理论公式的适用性及准确性。  相似文献   

3.
螺旋锚基础因具有较大的抗拔承载能力而被广泛用作风机、杆塔及其它受循环荷载作用的结构物基础,而目前有关循环荷载作用下螺旋锚的承载特性研究较少。通过土工离心机对密砂中预埋螺旋锚进行单调及循环加载试验,初步探讨埋深比和锚片数量对螺旋锚循环上拔稳定性及承载力的影响。结果表明,在平均循环荷载Q_c~(mean)逐级递增的加载条件下,对于单锚片螺旋锚,达到极限循环抗拔水平Q_(cu)~(mean)时的起始位移u_(apb)与单调加载时的破坏位移up接近;埋深比H/D≤6时,随着埋深比增加,相对极限循环抗拔能力Q_(cu)~(mean)/Q_(mu)逐渐增大,在H/D=6时,Q_(cu)~(mean)/Q_(mu)达到0.9,H/D6时,相对循环抗拔能力基本保持不变;并且,H/D6时单锚片螺旋锚各循环阶段的相对累积位移较H/D≥6的情况要大。因此,当采用单锚片螺旋锚抵抗循环上拔荷载时,建议螺旋锚埋深比至少为6。相同埋深比时双片螺旋锚与单片锚的相对极限循环抗拔水平相同,但在各循环加载阶段双片锚的累积上拔位移量均小于单片锚;若以变形作为控制条件衡量承载能力,双锚片明显优于单锚片螺旋锚。  相似文献   

4.
通过模型试验和有限单元法分析了密砂中圆形锚板上拔承载力的尺寸效应问题。分别对直径为20,50,400 mm的锚板在埋深比为2~6时进行拉拔试验,获得上拔力和位移关系曲线及极限上拔力。基于不同埋深比时板径与上拔承载力系数关系曲线,可发现:相同埋深比时,随着锚板直径增加,上拔承载力系数逐渐减小;且随着埋深比增加,此现象愈明显。考虑密砂强度随应变发展而出现的软化现象,对理想弹塑性Mohr-Coulomb模型进行改进,基于改进的模型对上述12个拉拔试验进行有限元数值模拟,同时与理想弹塑性模型模拟结果进行比较。结果表明:理想弹塑性模型严重高估锚板上拔承载力,而考虑土体软化的模型能够模拟锚板上拔过程中破坏面上土体强度逐渐发挥的过程,计算得到的极限承载力与试验结果吻合较好。尺寸效应产生的原因一方面由于应力水平对土体强度的影响,另一方面由渐进破坏引起;埋深比越大,随着锚板直径增加,周围土体依次进入破坏的过程愈加明显。  相似文献   

5.
输电杆塔螺旋锚基础常用于软土地基,为揭示泥沼软土原状地基螺旋锚抗拔承载性能,开展了不同锚盘直径、埋深、锚盘间距的螺旋锚原位抗拔载荷试验,得到了单锚基础荷载与位移关系曲线及其抗拔极限承载力,分析了泥沼软土地基螺旋锚抗拔承载特性,以及锚盘直径、盘个数、埋深、持力层性质对螺旋锚抗拔承载性能的影响,结果表明:软土地基中,螺旋锚荷载与位移关系曲线临塑荷载较小且塑性变形阶段较长;锚盘直径越大、个数越多则承载力越高;当相邻锚盘间距与锚盘直径之比大于2. 0时,同一螺旋锚的锚盘之间抗拔承载性能的相互影响可忽略;锚盘持力层性质对螺旋锚抗拔承载力的影响比埋深更明显。  相似文献   

6.
锚板拉拔过程是板与周围土体相互作用的过程,研究锚板周围土体的变形破坏机制对锚板抗拔力的预测具有重要意义。基于粒子图像测速(PIV)技术开展了一系列锚板拉拔试验,试验结果表明:PIV技术可以有效地捕捉到不同砂土地基密实度和锚板埋深条件下锚板拉拔过程中周围土体的变形破坏模式。PIV位移场分析结果显示:锚板埋深较浅时,松砂地基中破坏模式呈现直面破坏,密砂地基中呈现斜面破坏;锚板埋深较大时,松砂地基中土体内部锚板上方形成灯泡形影响区,密砂地基中呈现曲面破坏。PIV应变场分析结果表明:无论砂土地基埋深如何,松砂地基中形成的剪切应变带与水平面夹角为45°+φ/2,密砂地基中形成的剪切应变带与垂直面夹角约为φ/4。  相似文献   

7.
郭方胜 《土工基础》1997,11(3):22-28
螺旋锚片锚杆(简称螺旋锚)是一种利用深层土体抗力的锚固结构。笔者通过室内模型试验对螺旋锚的倾斜角度对其上拔承载力的影响及其上拔破坏机理进行了探讨。根据试验结果,结合螺旋锚上拔时的受力分析,并利用方差分析得到了一些结论。  相似文献   

8.
抗拔锚板上拔过程是一个复杂的锚土相互作用过程,锚板周围土体在上拔过程中的变形破坏机制对于抗拔锚板基础的极限承载力研究具有重要意义。基于PIV(particle image velocimetry)无干扰测量技术对砂土中方形锚板上拔过程中变形场进行了测量分析,研究了抗拔锚板群锚基础的破坏机制。试验结果表明:锚板间距对群锚破坏面的形状有着重要影响;在临界间距内,以锚板上部1倍边长为拐点,剪切带先内倾然后外倾向上贯通到土体表面,群锚效应系数与S/B为线性关系,由此预测出群锚效应达到100%时的锚板间距;达到临界间距后,每个锚板的剪切场和单个锚板剪切场一致,试验结果可为群锚基础极限抗拔力的预测提供参考。  相似文献   

9.
螺旋锚因具有较大的抗拔承载力而被广泛应用于杆塔、风轮发电机其等受循环荷载作用结构物的基础。近年来随着极端强风灾害的增多,螺旋锚已被推广应用于输电线路导线防舞动拉索的锚固设备。然而,目前关于循环荷载作用下螺旋锚承载特性的研究较少,没有关于其承载力计算方法的标准。为此,通过对粉土中螺旋锚开展原位单调及循环加载试验研究,探究螺旋锚循环上拔承载性能。结果表明:螺旋锚在50%静态极限承载力循环作用下,土体达到变形稳定时的累计位移均不大于25 mm;双盘螺旋锚在循环上拔荷载作用下的累计位移最小,约为其他单盘螺旋锚累计位移的一半;当螺旋锚承载力不足时,基础变形急剧增大,并伴随地面出现以螺旋锚为中心的辐射状裂纹;在整个试验过程中,循环荷载作用下的螺旋锚荷载-位移骨架曲线始终低于试验锚静载曲线,循环结束后在静载作用下,两者荷载-位移曲线基本重合;螺旋锚的上拔承载力主要由锚杆侧阻和锚盘端阻两部分组成,螺旋锚在循环上拔荷载作用下,锚杆接触界面的剪切带内土体的累积收缩导致法向应力降低,螺旋锚基础的上拔承载力全部由锚盘提供。  相似文献   

10.
软土地基螺旋桩竖向抗拔极限承载力计算方法   总被引:2,自引:0,他引:2  
 根据抗拔螺旋桩基础竖向抗拔承载性状,使用极限平衡理论和Meyerhof深基础承载力理论,提出抗拔螺旋桩基础首层叶片界限埋深和叶片控制间距,给出多层叶片螺旋桩基础竖向抗拔破坏模式,得到竖向抗拔螺旋桩基础的首层叶片界限埋深和极限承载力计算公式。通过对14次工程桩试验分析和极限承载力计算,竖向抗拔极限承载力计算值与实测值误差一般在10%以内,说明所建立的螺旋桩基础抗拔破坏模式比较接近于实际情况,极限承载力计算方法可用于估算螺旋桩基础的承载力。  相似文献   

11.
土体中锚板的上拔过程存在复杂的锚土相互作用,掌握其变形及破坏机制对于确定锚板的极限承载力和优化设计具有重要的意义.采用三维物质点法(MPM)模拟了砂土中圆形锚板的上拔过程,探究了不同埋深条件下土体的位移场分布及锚板的上拔破坏机制,并结合极限平衡法研究了砂土密实度、锚板尺寸和埋深等因素对其极限承载力的影响.结果 表明,临...  相似文献   

12.
Experimental and numerical investigations have been carried out on behavior of pullout resistance of embedded circular plate with and without geogrid reinforcement layers in stabilized loose and dense sands using a granular trench.Different parameters have been considered,such as the number of geogrid layers,embedment depth ratio,relative density of soil and height ratio of granular trench.Results showed that,without granular trench,the single layer of geogrid was more effective in enhancing the pullout capacity compared to the multilayer of geogrid reinforcement.Also,increasing the soil density and embedment depth ratio led to an increase in the uplift capacity.When soil was improved with the granular trench,the uplift force significantly increased.The granular trench improved the uplift load in dense sand more,as compared to the same symmetrical plate embedded in loose sand.Although it was observed that,in geogrid-reinforced granular trench condition,the ultimate pullout resistance at failure increased as the number of geogrid layers increased up to the third layer,and the fifth layer had a negligible effect in comparison with the third layer of reinforcement.Finite element analyses with hardening soil model for sand and CANAsand constitutive model for granular trench were conducted to investigate the failure mechanism and the associated rupture surfaces utilized.The response of granular material in the proposed model is an elastoplastic constitutive model derived from the CANAsand model,which uses a non-associated flow rule along with the concept of the state boundary surface possessing a critical and a compact state.It was observed that the granular trench might change the failure mechanism from deep plate to shallow plate as the failure surface can extend to the ground surface.The ultimate uplift capacity of anchor and the variation of surface deformation indicated a close agreement between the experiment and numerical model.  相似文献   

13.
不同埋深扩体锚杆竖向拉拔破坏模式试验研究   总被引:1,自引:0,他引:1  
郭钢  刘钟  杨松  张义  卢璟春 《工业建筑》2012,42(1):123-127,122
通过室内模型试验,研究砂土中竖直埋设的扩体锚杆在不同埋深条件下的竖向拉拔破坏模式。试验结果表明,扩体锚杆经过竖向拉拔,由于深径比的不同而存在3种破坏模式。浅埋扩体锚杆破坏体近似呈倒钟形并延伸至砂层表面,破坏模式属整体剪切破坏,在工程设计中应避免采用。深埋扩体锚杆破坏体在砂层表面以下一定深度内闭合成为"椭球形",砂层表面在扩体锚杆破坏后未产生变形,破坏模式属局部剪切破坏。因此,在工程设计中扩体锚杆应采用深埋形式。在浅埋与深埋扩体锚杆之间还存在一种过渡型锚杆,其破坏体形态兼具深埋与浅埋扩体锚杆破坏体的特征,但破坏模式趋近于浅埋锚杆,因此将其归类为浅埋锚杆破坏模式中。  相似文献   

14.
An investigation into the pullout response of helical soil nail using finite element subroutine Plaxis 2D is presented.The numerical modelling of actual pullout response is achieved by axisymmetric and horizontal loading condition.The effect of varying number of helical plates,helical plate spacing and helical plate diameter is studied to understand the pullout capacity behaviour.The failure surfaces for various helical soil nail configurations and their pullout mechanisms are also analysed and discussed.The pullout capacity is found to increase with increase in number of helical plates.The helical plate spacing ratio(s/D_h) and diameter ratio(D_h/D_s) are found to increase the pullout only up to a critical value.The response of helical soil nail using axisymmetric finite element simulation is found similar to the uplift behaviour of helical piles and helical soil anchors.In the absence of literature regarding numerical modelling of helical soil nail,simulation results are validated with uplift responses of helical piles and soil anchors.A good agreement in their comparative study for pullout response is also observed.  相似文献   

15.
Geogrid reinforcement can significantly improve the uplift bearing capacity of anchor plates. However, the failure mechanism of anchor plates in reinforced soil and the contribution of geogrids need further investigation. This paper presents an experimental study on the anchor uplift behavior in geogrid-reinforced soil using particle image velocimetry (PIV) and the high-resolution optical frequency domain reflectometry (OFDR). A series of model tests were performed to identify the relationship between the failure mechanism and various factors, such as anchor embedment ratio, number of geogrid layers, and their location. The test results indicate that soil deformation and the uplift resistance of anchor plates are substantially influenced by anchor embedment ratio and location of geogrids, whereas the number of geogrid layers has limited influence. In reinforced soil, increasing the embedment ratio greatly improves the ultimate bearing capacities of anchor plates and affects the interlock between the soil and geogrids. As the embedment depth increases, the failure surfaces gradually change from a vertical slip surface to a bulb-shaped surface that is limited within the soil. The strain monitoring data shows that the deformations of geogrids are symmetrical, and the peak strains of geogrids can characterize the reinforcing effects.  相似文献   

16.
本文采用离散单元法(DEM)建立的砂土中管道上浮模型来研究管道上浮时地基的破坏机理。首先考察不同密实度砂土在不同围压下的宏观力学特性,然后通过土体局部变形和颗粒位移场等微观变量分析不同密实度和不同埋深比对管道上浮地基破坏模式和上浮抗力的影响。结果表明:伴随土体变形,上覆土体的渐进破坏主要分布在上覆土体区域和管道周围;松砂中,与应力-应变关系类似,上浮抗力随着上浮位移的增长呈硬化性增长,管道周围土体回填进管道下部形成的空隙中,呈现局部流动破坏模式;密砂中,上浮抗力随着上浮位移的增加先上升后下降,规律与应变软化一致,管道上方先剪切形成倒梯形的上覆土楔,然后管道周围土体回填下部空隙形成流动,呈现先整体剪切破坏后局部流动的破坏模式;随着埋深的增加,上浮抗力增加,密砂中以先整体剪切破坏为主,同时局部流动破坏有明显的趋势。  相似文献   

17.
沙漠风积沙地基结构松散、稳定性差、承载力低,利用水泥作为固化剂固化稳定风积沙,形成水泥固化风积沙地基是改善其不良工程特性的有效手段。将取自内蒙古库布齐沙漠的现场风积沙重塑为3%含水率的试验用风积沙,向其中掺入6%普通硅酸盐水泥经充分拌和形成水泥固化风积沙填料,完成了水泥固化风积沙地基中9个扩展基础模型抗拔试验。结果表明,风积沙水泥固化方法可显著提高风积沙抗拔承载性能。上拔荷载作用下,当水泥固化风积沙扩展基础抗拔深度与底板边长比值小于3.5时,其荷载–位移曲线呈2阶段变化:初始弹性段—峰值荷载、峰值荷载后破坏段,极限抗拔承载力对应的位移与底板边长比值变化范围为0.04%~1.05%,平均0.54%。按"土重法"确定的水泥固化风积沙"上拔角"远大于天然风积沙。  相似文献   

18.
The problem of the limiting resistance of soil to the transverse displacement of a shallow pipeline, which is directed at an arbitrary angle to the horizon, is discussed. The problem is solved by the variational method on the basis of which slip lines in the form of logarithmic spirals, which limit the body of soil uplift onto the surface. Recommendations for practical accounting of the indicated limiting resistance in the form of a two-term formula, tables, and diagrams for calculation of its coefficients are given for the case of a horizontal loading. This solution can, however, be used to determine the bearing capacity of plate anchors used in port construction. The problem of the limiting resistance of a soil to the transverse displacement of a pipe (anchor, pile) in the case of deep embedment, when there is no uplift onto the surface, but “cut through,” is examined separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号