首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 343 毫秒
1.
利用颗粒流软件中平行粘结方式建立数值计算模型,通过校核室内试验数据确定数值模型的细观参数值,并采用smooth-joint在模型中设置两条断续节理,通过改变岩桥倾角和节理倾角,建立不同节理布置数值模型。从细观和宏观两方面,研究单轴压缩荷载下节理试样内接触力、微裂隙数量和节理岩体的破坏行为发现,峰值轴向应力之前,微裂隙数量增加缓慢,峰值轴向应力之后,微裂隙数量迅速增加;颗粒接触力易在节理端部和岩桥处聚集,在节理中间段附近分布较为稀疏,接触力较大的位置易产生裂纹;峰值轴向应力时刻,岩桥倾角为15°时,岩桥均未贯通,岩桥倾角为45°和75°时,绝大部分试样的岩桥贯通了,节理倾角为90°时,岩桥全部没有贯通。  相似文献   

2.
非共面双裂隙红砂岩宏细观力学行为颗粒流模拟   总被引:1,自引:0,他引:1  
通过颗粒流程序(PFC)细观参数敏感性分析与完整红砂岩在常规三轴压缩下的试验结果,获得一组能够真实反映完整红砂岩宏观力学行为的细观参数。在此基础上,对断续双裂隙红砂岩在不同围压作用下进行颗粒流模拟,分析围压以及岩桥倾角对断续双裂隙红砂岩强度破坏特征的影响规律,揭示断续双裂隙红砂岩在不同围压作用下裂纹扩展的细观力学响应机制。研究结果表明:与完整红砂岩相比,断续双裂隙红砂岩峰值强度参数显著降低,且降幅与岩桥倾角?密切相关,黏聚力和内摩擦角均随着岩桥倾角?的增大呈非线性变化。当断续双裂隙红砂岩?= 0°和30°时,两者裂纹扩展模式相近,裂隙①和②之间无贯通;当?= 60°和90°时,两者裂纹扩展模式相近,裂隙①和②之间出现一处贯通;当?= 120°时,在低围压下裂隙①和②之间出现两处贯通,在高围压下只有一处贯通。当应力增大到一定程度之后,颗粒之间黏结断裂,微裂纹不断产生、汇集和贯通,最终形成宏观裂纹,使得试样发生失稳破坏。围压的增加在细观上提高了颗粒之间的接触力,在宏观上表现为强度增大。高围压的存在限制了微裂纹的扩展速率。  相似文献   

3.
为研究断续岩石裂纹产状特性对岩体强度的影响和岩桥破断规律,在水泥砂浆中预制有序多裂纹体,开展单轴压缩下类岩石材料有序多裂纹体破断试验。研究发现:有序多裂纹体破断模式主要为排间翼形拉裂纹贯通、排间拉伸—剪切裂纹贯通和排内倾斜剪切裂纹贯通。当裂纹倾角较小(如倾角为25°和45°)时,随裂纹密度的增加,试件表征峰值强度总体上呈衰减趋势,而残余强度总体上呈增加走势;裂纹倾角较大(如倾角为75°和90°)时,裂纹密度对表征峰值强度无显著影响,其残余强度特性表现不明显;相同裂纹密度下倾角从25°变化到90°,试件表征峰值强度总体上呈增加趋势。提出主控岩桥贯通模式的概念,倾角25°试件的主控岩桥贯通模式大都是斜对角线上排间拉伸-剪切裂纹贯通;倾角45°试件的主控岩桥贯通模式为:翼形裂纹贯通和斜对角线方向上共面次生剪切裂纹贯通两种模式。裂纹尖端应力-应变集中特性揭示了压剪裂纹尖端的拉应变集中是岩石翼形裂纹萌生的本质原因,而裂纹端部的双向压应力-应变集中导致次生剪切裂纹萌生。从岩石断裂力学基本理论出发,引入点剪切安全系数,构建基于ANSYS的岩石多裂纹体翼形断裂扩展的数值分析模型,阐明了单轴压缩下有序多裂纹体翼形断裂贯通的力学机制,其数值结论与物理试验基本相吻合。  相似文献   

4.
阶梯状滑移破裂作为节理斜坡的一种典型破坏模式,裂隙间裂纹的扩展模式对其变形破裂机制及斜坡破裂面形态具有重要的意义。通过颗粒流程序研究了不同岩桥倾角(0°,45°,90°,135°)和围压条件下双裂隙间裂纹的贯通模式、基本特征与影响因素,揭示含双裂隙岩体在不同围压作用下裂纹扩展的细观力学机制,并推广到含多裂隙岩体裂纹扩展模式中。主要成果如下:(1)双裂隙的贯通主要通过次生共面裂纹、次生倾斜裂纹和翼裂纹;(2)裂纹扩展具有明显的围压效应,低围压条件下,裂隙的贯通主要通过翼裂纹和次生倾斜裂纹,高围压条件下,裂隙的贯通主要通过次生共面裂纹和次生倾斜裂纹;(3)裂隙的贯通应力受岩桥倾角影响较大,岩桥倾角为45°时,裂隙的贯通应力最小,裂隙最容易贯通。结合双裂隙贯通模式的研究,对多裂隙岩体贯通模式进行研究,多裂隙岩体贯通模式可以理解为多组双裂隙的贯通模式的不同组合,同时,在多裂隙贯通模式中,裂纹会寻找贯通应力最小路径扩展。最后,结合一实际斜坡案例,对阶梯状破坏斜坡的基本破裂特征进行了总结分析,并提出了相应的破裂模式分区。  相似文献   

5.
在连续体内引入预制裂纹的数学描述,运用近场动力学方法对含有预制裂隙(不同倾角的单裂缝和不同岩桥倾角的三裂缝)的岩石类材料试件的单轴压缩试验进行数值模拟。结果表明,随着裂缝倾角的增加,翼型裂纹出现的位置逐渐向预制裂隙的两端移动,次生共面剪切裂纹与次生倾斜裂纹出现的时间与形态也随之改变;不同倾角的岩桥呈现的断裂贯通形式有着明显的差异,但裂纹均是在预制裂缝尖端首先产生,随后逐渐扩展贯通,最终导致试件的整体失稳破坏。数值模拟与室内试验结果的对比分析表明近场动力学方法可以很好地模拟岩石类材料的裂纹扩展贯通形态,反映裂隙扩展的基本力学机制;作为一种新的非局部数值模型,其在岩石材料与岩体工程数值研究领域具有广阔的应用前景。  相似文献   

6.
采用颗粒流软件PFC模拟了单轴压缩、双轴压缩和卸围压条件下裂隙倾角和岩桥倾角分别对含单裂隙和双裂隙岩体的裂纹扩展贯通的影响,对比分析了不同应力路径下裂隙岩体破裂演化过程,总结了裂纹扩展贯通模式,揭示了裂纹扩展贯通的细观力学机制和裂隙岩体损伤破裂的能量机制。研究表明:卸围压条件下岩样张性破坏略弱于单轴压缩条件但远强于双轴压缩条件,而剪性破坏远强于单轴压缩条件但略弱于双轴压缩条件;裂隙尖端应力集中导致岩体开裂,随后张性翼裂纹受拉应力场驱使沿拉应力释放区与压应力区边界延伸扩展,剪切裂纹受压应力场驱使,其扩展路径处压应力释放;裂隙岩体发生卸荷破坏时,内部损伤和贯通裂隙的产生会导致耗散能的急剧增加。  相似文献   

7.
单轴压缩岩石不同边界裂纹扩展数值模拟研究   总被引:1,自引:0,他引:1  
对于单轴压缩的岩石试件,其破坏形式主要是微裂纹的摩擦滑移、自相似平面扩展和弯折扩展.基于断裂力学机制,运用FLAC的显式有限差分数值模拟技术,对单轴压缩荷载下三种不同边界形状,即直边、凸形、凹形情况下含近边界预置斜裂纹的岩石模型进行了数值模拟研究.研究结果表明,基于Interface界面单元建立的裂纹扩展模式以Z型翼裂纹扩展为主,可以较好地模拟裂纹扩展过程.预置裂纹倾角和边界形状对近边界裂纹起裂应力及裂纹扩展过程都有一定的影响.凹边界情况下裂纹扩展较为稳定,无非稳定扩展情况的出现,而直边界和凸边界情况裂纹扩展均由稳定扩展到非稳定扩展逐步进行.  相似文献   

8.
含裂隙岩体在外力作用下,内部裂纹会发生扩展,这会显著影响强度以及损伤特性。基于前期验证可靠的DIC系统,对含双裂纹的类岩石材料进行单轴压缩试验,捕获全过程的应变场演化云图以及岩桥区域应变局部化过程,研究发现:岩样呈现出显著的变形局部化渐进破坏特性;试验初期形成的应变局部化带基本确定了加载全程全局应变场的变化范围与变化趋势;基于试验研究,双裂纹岩样的贯通破坏模式可归总为4类:岩桥不贯通模式、裂纹内尖端贯通模式、裂纹内外尖端贯通模式以及裂纹外尖端贯通模式;岩桥角度及其空间排布在细观上影响了应变场局部化带的演化过程,宏观上决定了裂纹的扩展路径及岩样的破坏模式;岩桥贯通时应变局部化带的融合造成了应力–应变曲线的"峰前波动",使得岩样强度降低,并且融合越慢岩样强度越高。  相似文献   

9.
端部开裂的裂隙岩体内部岩桥贯通是导致岩体突发失稳破坏的主要原因,脆性破坏特征明显。利用声发射仪和岩石力学刚性试验机,对不同长度开放岩桥开展单轴压缩试验,结合高速摄像机记录信息,分析了开放岩桥裂纹起裂、扩展、贯通规律及脆性破坏过程力学特性和声发射特征,并通过三维断裂力学理论揭示了开放岩桥裂纹起裂扩展贯通机理。研究结果表明:与闭合裂纹相比,开放裂纹岩桥主裂纹从下部预制裂纹内尖端起裂,往上部拐折扩展贯通岩桥和上端面,贯通过程岩桥发生逐次多级破坏,次裂纹主要沿主裂纹拐折处起裂扩展贯通岩桥及下端面;应力曲线表现出峰前"波动上升"和峰后"滞留–突降"特征,声发射参数"多峰值"现象明显,阶段性和突发性特征突出;同时,三维理论分析表明裂纹起始扩展方向与岩桥长度无关,沿最大压应力方向扩展。研究所得开放岩桥裂纹扩展贯通特征可为裂隙岩体突发失稳破坏过程提供理论依据。  相似文献   

10.
为从矿物尺度研究花岗岩在单轴压缩作用下的裂纹扩展规律,提出一种将高精度内部结构探测技术与PFC颗粒流数值模拟相结合的CT-GBM(computed tomography-grain based model)建模方法,用于构建基于真实矿物晶体结构的二维GBM模型。根据室内单轴压缩试验所获取的宏观力学参数及破坏形式对所建立模型的细观参数进行校正,并基于所校正模型探究花岗岩矿物晶体裂纹扩展规律。结果表明:CT-GBM建模方法可有效地模拟和复现花岗岩的硬脆特性及劈裂破坏形式。花岗岩在单轴压缩加载过程中主要经历4个阶段:无裂纹阶段、裂纹萌生阶段、裂纹稳定扩展阶段、裂纹非稳定扩展阶段。在破裂过程中,微裂纹萌生的次序分别是:晶间拉伸裂纹、晶间剪切裂纹、晶内拉伸裂纹、晶内剪切裂纹,并且以晶间拉伸裂纹为主。而从矿物类别角度考虑,微裂纹首先在长石矿物内部萌生,随后是石英和云母,其中汇聚成核的区域以云母和长石矿物为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号