首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Occurrence and fate of TMDD in wastewater treatment plants in Germany   总被引:1,自引:0,他引:1  
Guedez AA  Püttmann W 《Water research》2011,45(16):5313-5322
The occurrence and fate of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) was investigated in four wastewater treatment plants (WWTPs) in Germany. The concentration of TMDD in influents and effluents in the WWTPs ranged from 134 ng/L to 5846 ng/L and from <LOQ to 3539 ng/L correspondingly. Loads determined in influents (10.1 g/d-1142 g/d) and effluents (<LOQ - 425 g/d) indicate that TMDD is partially removed from the wastewater. The elimination rates varied between 33% and 68%. Based on the load analysis, the TMDD effluent discharge of WWTPs investigated varied from 8.29 kg/a to 52.6 kg/a. Day and week profiles were recorded and indicated that TMDD is introduced into the sewage through household and indirect dischargers with high fluctuations. Seasonal variations in the TMDD loads were also analyzed in three of the studied WWTPs. One of the WWTPs demonstrated statistically higher TMDD loads during the warm period (164 g/d) than during the cold period (91.3 g/d), for the others WWTPs any differences could not be established. The input of TMDD during weekends and working days was also studied. The results did not show any significant trend of TMDD discharge into the WWTPs.  相似文献   

2.
Sun H  Li F  Zhang T  Zhang X  He N  Song Q  Zhao L  Sun L  Sun T 《Water research》2011,45(15):4483-4490
Concentrations of 10 perfluorinated chemicals (PFCs) were investigated in the Hun River (HR), four canals, ten lakes, and influents and effluents from four main municipal wastewater treatment plants (WWTPs) in Shenyang, China. Mass flows of four main PFCs were calculated to elucidate the contribution from different sections of the HR. Overall, perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) were the major PFCs in the HR, with ranges of 2.68-9.13 ng/L, and 2.12-11.3 ng/L, respectively, while perfluorooctane sulfonate (PFOS) was detected at lower levels, ranging from 0.40 to 3.32 ng/L. The PFC concentrations in the HR increased after the river passes through two cities (Shenyang and Fushun), indicating cities are an important contributor for PFCs. Mass flow analysis in the HR revealed that PFC mass flows from Fushun are 1.65-5.50 kg/year for C6-C8 perfluorinated acids (PFCAs) and 1.29 kg/year for PFOS, while Shenyang contributed 2.83-5.18 kg C6-C8 PFCAs/year, and 3.65 kg PFOS/year. The concentrations of PFCs in four urban canals were higher than those in the HR, with the maximum total PFCs of 240 ng/L. PFOA and PFOS showed different trends along these canals, suggesting different sources for the two PFCs. Total PFCs in ten lakes from Shenyang were at low levels, with the greatest concentration (56.2 ng/L) detected in a heavily industrialized area. The PFC levels in WWTP effluents were higher than those in surface waters with concentrations ranging from 18.4 to 41.1 ng/L for PFOA, and 1.69-3.85 ng/L for PFOS. Similar PFC profiles between effluents from WWTPs and urban surface waters were found. These results indicate that WWTPs are an important PFC source in surface water. Finally, we found that the composition profiles of PFCs in surface waters were similar to those in tap water, but not consistent with those in adult blood from Shenyang. The calculation on total daily intake of PFOS by adults from Shenyang showed that the contribution of drinking water to human exposure was minor.  相似文献   

3.
Research has shown that exposure to androgens and progestogens can cause undesirable biological responses in the environment. To date, however, no detailed or direct study of their presence in wastewater treatment plants has been conducted. In this study, nine androgens, nine progestogens, and five estrogens were analyzed in influent and final effluent wastewaters in seven wastewater treatment plants (WWTPs) of Beijing, China. Over a period of three weeks, the average total hormone concentrations in influent wastewaters were 3562 (Wujiacun WWTP)-5400 ng/L (Fangzhuang WWTP). Androgens contributed 96% of the total hormone concentrations in all WWTP influents, with natural androgen (androsterone: 2977 ± 739 ng/L; epiandrosterone: 640 ± 263 ng/L; and androstenedione: 270 ± 132 ng/L) being the predominant compounds. The concentrations of synthetic progestogens (megestrol acetate: 41 ± 25 ng/L; norethindrone: 6.5 ± 3.3 ng/L; and medroxyprogesterone acetate: 6.0 ± 3.2 ng/L) were comparable to natural ones (progesterone: 66 ± 36 ng/L; 17α,20β-dihydroxy-4-progegnen-3-one: 4.9 ± 1.2 ng/L; 21α-hydroxyprogesterone: 8.5 ± 3.0 ng/L; and 17α-hydroxyprogesterone: 1.5 ± 0.95 ng/L), probably due to the wide and relatively large usage of synthetic progestogens in medical therapy. In WWTP effluents, androgens were still the dominant class accounting for 60% of total hormone concentrations, followed by progestogens (24%), and estrogens (16%). Androstenedione and testosterone were the main androgens detected in all effluents. High removal efficiency (91-100%) was found for androgens and progestogens compared with estrogens (67-80%), with biodegradation the major removal route in WWTPs. Different profiles of progestogens in the receiving rivers and WWTP effluents were observed, which could be explained by the discharge of a mixture of treated and untreated wastewater into the receiving rivers.  相似文献   

4.
Qian Sui  Qing Fan 《Water research》2010,44(2):417-426
The occurrence and removal of 13 pharmaceuticals and 2 consumer products, including antibiotic, antilipidemic, anti-inflammatory, anti-hypertensive, anticonvulsant, stimulant, insect repellent and antipsychotic, were investigated in four wastewater treatment plants (WWTPs) of Beijing, China. The compounds were extracted from wastewater samples by solid-phase extraction (SPE) and analyzed by ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Most of the target compounds were detected, with the concentrations of 4.4 ng L−1-6.6 μg L−1 and 2.2-320 ng L−1 in the influents and secondary effluents, respectively. These concentrations were consistent with their consumptions in China, and much lower than those reported in the USA and Europe. Most compounds were hardly removed in the primary treatment, while their removal rates ranging from −12% to 100% were achieved during the secondary treatment. In the tertiary treatment, different processes showed discrepant performances. The target compounds could not be eliminated by sand filtration, but the ozonation and microfiltration/reverse osmosis (MF/RO) processes employed in two WWTPs were very effective to remove them, showing their main contributions to the removal of such micro-pollutants in wastewater treatment.  相似文献   

5.
The presence of 28 antibiotics in three hospital effluents, five wastewater treatment plants (WWTPs), six rivers and a drinking water storage catchment were investigated within watersheds of South-East Queensland, Australia. All antibiotics were detected at least once, with the exception of the polypeptide bacitracin which was not detected at all. Antibiotics were found in hospital effluent ranging from 0.01-14.5 μg L− 1, dominated by the β-lactam, quinolone and sulphonamide groups. Antibiotics were found in WWTP influent up to 64 μg L− 1, dominated by the β-lactam, quinolone and sulphonamide groups. Investigated WWTPs were highly effective in removing antibiotics from the water phase, with an average removal rate of greater than 80% for all targeted antibiotics. However, antibiotics were still detected in WWTP effluents in the low ng L− 1 range up to a maximum of 3.4 μg L− 1, with the macrolide, quinolone and sulphonamide antibiotics most prevalent. Similarly, antibiotics were detected quite frequently in the low ng L− 1 range, up to 2 μg L− 1 in the surface waters of six investigated rivers including freshwater, estuarine and marine samples. The total investigated antibiotic concentration (TIAC) within the Nerang River was significantly lower (p < 0.05) than all other rivers sampled. The absence of WWTP discharge to this river is a likely explanation for the significantly lower TIAC and suggests that WWTP discharges are a dominant source of antibiotics to investigated surface waters. A significant difference (p < 0.001) was identified between TIACs at surface water sites with WWTP discharge compared to sites with no WWTP discharge, providing further evidence that WWTPs are an important source of antibiotics to streams. Despite the presence of antibiotics in surface waters used for drinking water extraction, no targeted antibiotics were detected in any drinking water samples.  相似文献   

6.
Occurrence and removal of N-nitrosamines in wastewater treatment plants   总被引:1,自引:0,他引:1  
The presence of nitrosamines in wastewater might pose a risk to water resources even in countries where chlorination or chloramination are hardly used for water disinfection. We studied the variation of concentrations and removal efficiencies of eight N-nitrosamines among 21 full-scale sewage treatment plants (STPs) in Switzerland and temporal variations at one of these plants. N-nitrosodimethylamine (NDMA) was the predominant compound in STP primary effluents with median concentrations in the range of 5-20 ng/L, but peak concentrations up to 1 μg/L. N-nitrosomorpholine (NMOR) was abundant in all plants at concentrations of 5-30 ng/L, other nitrosamines occurred at a lower number of plants at similar levels. From concentrations in urine samples and domestic wastewater we estimated that human excretion accounted for levels of <5 ng/L of NDMA and <1 ng/L of the other nitrosamines in municipal wastewater, additional domestic sources for <5 ng/L of NMOR. Levels above this domestic background are probably caused by industrial or commercial discharges, which results in highly variable concentrations in sewage. Aqueous removal efficiencies in activated sludge treatment were in general above 40% for NMOR and above 60% for the other nitrosamines, but could be lower if concentrations were below 8-15 ng/L in primary effluent. We hypothesize that substrate competition in the cometabolic degradation explains the occurrence of such threshold concentrations. An additional sand filtration step resulted in a further removal of nitrosamines from secondary effluents even at low concentrations. Concentrations released to surface waters were largely below 10 ng/L, suggesting a low impact on Swiss water resources and drinking water generation considering the generally high environmental dilution and possible degradation. However, local impacts in case a larger fraction of wastewater is present cannot be ruled out.  相似文献   

7.
The distribution of estrogen receptor (ERα) and Aryl Hydrocarbon Receptor (AhR) activities between the dissolved phase and suspended solids were investigated during wastewater treatment. Three wastewater treatment plants with different treatment technologies (waste stabilization ponds (WSPs), trickling filters (TFs) and activated sludge supplemented with a biofilter system (ASB)) were sampled. Estrogenic and AhR activities were detected in both phases in influents and effluents. Estrogenic and AhR activities in wastewater influents ranged from 41.8 to 79 ng/L E2 Eq. and from 37.9 to 115.5 ng/L TCDD Eq. in the dissolved phase and from 5.5 to 88.6 ng/g E2 Eq. and from 15 to 700 ng/g TCDD Eq. in the suspended solids. For both activities, WSP showed greater or similar removal efficiency than ASB and both were much more efficient than TF which had the lowest removal efficiency. Moreover, our data indicate that the efficiency of removal of ER and AhR activities from the suspended solid phase was mainly due to removal of suspended solids. Indeed, ER and AhR activities were detected in the effluent suspended solid phase indicating that suspended solids, which are usually not considered in these types of studies, contribute to environmental contamination by endocrine disrupting compounds and should therefore be routinely assessed for a better estimation of the ER and AhR activities released in the environment.  相似文献   

8.
Four Beijing wastewater treatment plants (WWTPs) were selected to investigate behaviours of nonylphenol polyethoxylates and their metabolites in different wastewater treatment processes. The results showed that the total concentrations of nonylphenolic compounds in the influents of the four WWTPs ranged from 0.115 to 0.347 μmol/L, as well as their removal efficiencies ranging from 75.7% to 90.8%. Both influent concentrations and removal efficiencies of nonylphenol polyethoxylates were correlated to seasons as follows: higher in the summer than in the winter, and influent concentrations were lower during the rain weather. The analysis revealed that 21.8-47.6% of nonylphenol polyethoxylates and their metabolites entering WWTPs were released via effluents and excess sludge, leaving a great part of them for biodegradation. Nonylphenol and short-chain nonylphenol polyethoxylates were disposed to the environment mainly via sewage sludge, while carboxylated nonylphenol polyethoxylates were the most abundant group of nonylphenol polyethoxylates in effluents.  相似文献   

9.
Seventy water samples, including wastewaters, tap waters, fresh surface waters, coastal waters, groundwaters, and precipitation samples, from Tianjin, China, were analyzed for seven commonly used artificial sweeteners (ASs). The concentrations of the investigated ASs were generally in the order of wastewater treatment plant (WWTP) influent > WWTP effluent > surface water > tap water > groundwater ≈ precipitation, while the composition profiles of ASs varied in different waters. Acesulfame, sucralose, cyclamate, and saccharin were consistently detected in surface waters and ranged from 50 ng/L to 0.12 mg/L, while acesulfame was the dominant AS in surface and tap waters. Aspartame was found in all of the surface waters at a concentration up to 0.21 μg/L, but was not found in groundwaters and tap waters. Neotame and neohesperidin dihydrochalcone were less frequently detected and the concentrations were low. The concentrations of the ASs in some of the surface waters were of the same order with those in the WWTP influents, but not with the effluents, indicating there are probably untreated discharges into the surface waters. The ASs were detected in precipitation samples with high frequency, and acesulfame, saccharin, and cyclamate were the predominant ASs, with concentrations ranging from 3.5 ng/L to 1.3 μg/L. A gross estimation revealed that precipitation may act as a source for saccharin and cyclamate in the surface environment of Tianjin city. Moreover, the presence of ASs in the atmosphere was primarily assessed by taking 4 air samples to evaluate their potential source in precipitation.  相似文献   

10.
Surfactants are high production volume chemicals that are used in a wide assortment of “down-the-drain” consumer products. Wastewater treatment plants (WWTPs) generally remove 85 to more than 99% of all surfactants from influents, but residual concentrations are discharged into receiving waters via wastewater treatment plant effluents. The Trinity River that flows through the Dallas-Fort Worth metropolitan area, Texas, is an ideal study site for surfactants due to the high ratio of wastewater treatment plant effluent to river flow (> 95%) during late summer months, providing an interesting scenario for surfactant loading into the environment. The objective of this project was to determine whether surfactant concentrations, expressed as toxic units, in-stream water quality, and aquatic habitat in the upper Trinity River could be predicted based on easily accessible watershed characteristics. Surface water and pore water samples were collected in late summer 2005 at 11 sites on the Trinity River in and around the Dallas-Fort Worth metropolitan area. Effluents of 4 major waste water treatment plants that discharge effluents into the Trinity River were also sampled. General chemistries and individual surfactant concentrations were determined, and total surfactant toxic units were calculated. GIS models of geospatial, anthropogenic factors (e.g., population density) and natural factors (e.g., soil organic matter) were collected and analyzed according to subwatersheds. Multiple regression analyses using the stepwise maximum R2 improvement method were performed to develop prediction models of surfactant risk, water quality, and aquatic habitat (dependent variables) using the geospatial parameters (independent variables) that characterized the upper Trinity River watershed. We show that GIS modeling has the potential to be a reliable and inexpensive method of predicting water and habitat quality in the upper Trinity River watershed and perhaps other highly urbanized watersheds in semi-arid regions.  相似文献   

11.
A 5-month monitoring program was undertaken in South Wales in the UK to determine the fate of 55 pharmaceuticals, personal care products, endocrine disruptors and illicit drugs (PPCPs) in two contrasting wastewater plants utilising two different wastewater treatment technologies: activated sludge and trickling filter beds. The impact of treated wastewater effluent on the quality of receiving waters was also assessed.PPCPs were found to be present at high loads reaching 10 kg day−1 in the raw sewage. Concentrations of PPCPs in raw sewage were found to correlate with their usage/consumption patterns in Wales and their metabolism. The efficiency of the removal of PPCPs was found to be strongly dependent on the technology implemented in the wastewater treatment plant (WWTP). In general, the WWTP utilising trickling filter beds resulted in, on average, less than 70% removal of all 55 PPCPs studied, while the WWTP utilising activated sludge treatment gave a much higher removal efficiency of over 85%. The monitoring programme revealed that treated wastewater effluents were the main contributors to PPCPs concentrations (up to 3 kg of PPCPs day−1) in the rivers studied. Bearing in mind that in the cases examined here the WWTP effluents were also major contributors to rivers' flows (dilution factor for the studied rivers did not exceed 23 times) the effect of WWTP effluent on the quality of river water is significant and cannot be underestimated.  相似文献   

12.
We report a survey on the occurrence of estrogens (estrone, E1; 17β-estradiol, E2; 17α-ethynylestradiol, EE2) and xenoestrogens (bisphenol-A, BPA; 4-t-octylphenol, 4-t-OP; 4-nonylphenols, 4-NP; and nonylphenol mono- and di-ethoxylates, NPE1 and NPE2) in effluents from five wastewater treatment plants and their receiving waters in South East Queensland. The total xenoestrogen concentrations in effluent ranged between 2446 ng/L and 6579 ng/L, with 4-NP and NPE1-2 having much higher concentration levels than BPA and 4-t-OP. The estrogen levels in effluent varied from 9.12 to 32.22 ng/L for E1, from 1.37 ng/L to 6.35 ng/L for E2 and from 0.11 ng/L to 1.20 ng/L for EE2. No significant differences (p < 0.05) in the concentrations of the selected estrogenic compounds were found for the effluents from the five sewage treatment plants. The estrogens and xenoestrogens were also found in the receiving waters at relatively lower concentration levels due to dilution of effluents in the rivers. Based on the chemical analysis data and relative potency of the compound from in vitro and in vivo bioassays from the literature, the calculated in vitro EEQ values (estrogen equivalents) in the receiving river waters downstream of the effluent discharge points ranged from 1.32 to 11.79 ng/L, while the in vivo EEQ values (vitellogenin response in rainbow trout) ranged from 2.48 to 21.18 ng/L. The three estrogens accounted for the majority of the EEQ in the water samples. This study indicates that the rivers of South East Queensland are at potential risk.  相似文献   

13.
1H-benzo-1,2,3-triazole (BTri) and its methylated analogues (tolyltriazole, TTri) are corrosion inhibitors used in many industrial applications, but also in households in dishwashing agents and in deicing fluids at airports and elsewhere. BTri and one of the TTri-isomers (4-TTri) are typical examples of polar and poorly degradable trace pollutants. Benzotriazole elimination in four wastewater treatment plants (WWTP) in Berlin ranged from 20 to 70% for 5-TTRi over 30 to 55% for BTri to insignificant for 4-TTri. WWTP effluent concentrations were in the range of 7-18 μg/L of BTri, 1-5 μg/L of 4-TTri and 0.8-1.2 μg/L of 5-TTri. BTri and 4-TTri proved to be omnipresent in surface waters of the rivers Rhine and Elbe with concentrations increasing from <0.05 μg/L to around 0.5 μg/L of BTri and 0.2-0.5 μg/L of 4-TTri over 600-700 km. Bank filtration is an important process to generate raw water for drinking water production from surface waters. Even after residence times of several months BTri and 4-TTri were determined in concentrations of a few hundred ng/L in bank filtration water. Isotherm data from batch experiments indicate that activated carbon filtration should be suitable to avoid intrusion of TTri into drinking water in partially closed water cycles. For BTri, however, sorption to activated carbon appears to be too weak and ozonation may be mandatory to remove it from raw waters.  相似文献   

14.
Perfluorinated compounds (PFCs) were measured in 10 Washington State rivers and 4 wastewater treatment plants (WWTPs) under periods of low and high flows to investigate the relative importance of point and non-point sources to rivers. PFCs were detected in all samples with summed values ranging from 1.11 to 74.9 ng/L in surface waters and 62.3-418 ng/L in WWTP effluent. Concentrations in 6 of the 10 rivers exhibited a positive relationship with flow, indicating runoff as a contributing source, with PFC loads greatest at all 10 waterbodies during high flows. Perfluoroheptanoic acid:perfluorooctanoic acid homologue ratios suggest atmospheric contributions to the waterbodies are important throughout the year. Principal component analysis (PCA) indicated distinct homologue profiles for high flow, low flow, and effluent samples. The PCA demonstrates that during the spring when flows and loads are at their greatest; WWTP discharges are not the primary sources of PFCs to the river systems. Taken together, the evidence provided signifies non-point inputs are a major pathway for PFCs to surface waters in Washington State.  相似文献   

15.
Predicting disinfection by-product formation potential in water   总被引:5,自引:0,他引:5  
Formation of regulated and non-regulated disinfection by-products (DBPs) is an issue at both potable water and wastewater treatment plants (W/WWTPs). Water samples from W/WWTPs across the USA were collected and DBP formation potentials (DBPFPs) in the presence of free chlorine and chloramine were obtained for trihalomethane (THM), haloacetic acid (HAA), haloacetonitrile (HAN), and N-nitrosodimethylamine (NDMA). With nearly 200 samples covering a range of dissolved organic carbon (0.6-23 mg/L), ultraviolet absorbance (0.01-0.48 cm−1 at 254 nm wavelength), and bromide (0-1.0 mg/L) levels, power function models were developed to predict the carbonaceous DBP (C-DBP) and nitrogenous DBP (N-DBP) precursors spanning 3 orders of magnitudes. The predicted THM and HAA formation potentials fitted well with the measured data (analytical variance of less than 22%). Inclusion of dissolved organic nitrogen (DON) into the HANFP model improved the predictions. NDMAFP was the most difficult one to predict based upon the selected water quality parameters, perhaps suggesting that bulk measurements such as DOC or UVA254 were not appropriate for tracking NDMAFP. These are the first such DBPFP models for wastewater systems, and among the few models that consider both C-DBPs and N-DBPs formation potentials from the same water sources.  相似文献   

16.
Diarrhea is the main health problem caused by human-related microsporidia, and waterborne transmission is one of the main risk factors for intestinal diseases. Recent studies suggest the involvement of water in the epidemiology of human microsporidiosis. However, studies related to the presence of microsporidia in different types of waters from countries where human microsporidiosis has been described are still scarce. Thirty-eight water samples from 8 drinking water treatment plants (DWTPs), 8 wastewater treatment plants (WWTPs) and 6 recreational river areas (RRAs) from Galicia (NW Spain) have been analyzed. One hundred liters of water from DWTPs and 50 L of water from WWTPs and RRAs were filtered to recover parasites, using the IDEXX Filta-Max® system.Microsporidian spores were identified by Weber’s stain and positive samples were analyzed by PCR, using specific primers for Enterocytozoon bieneusi, Encephalitozoon intestinalis, Encephalitozoon cuniculi, and Encephalitozoon hellem. Microsporidia spores were identified by staining protocols in eight samples (21.0%): 2 from DWTPs, 5 from WWTPs, and 1 from an RRA. In the RRA sample, the microsporidia were identified as E. intestinalis.To the best of our knowledge, this is the first report of human-pathogenic microsporidia in water samples from DWTPs, WWTPs and RRAs in Spain. These observations add further evidence to support that new and appropriate control and regulations for drinking, wastewater, and recreational waters should be established to avoid health risks from this pathogen.  相似文献   

17.
The occurrence of 31 selected endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs) in Korean surface waters was investigated. The area was selected since there is a lack of information in the Seoul area on the suspected contamination of rivers by micropollutants, although over 99% of drinking water is produced from surface waters in this area that has a population of approximately 15 million inhabitants. Samples were collected from upstream/downstream and effluent-dominated creeks along the Han River, Seoul (South Korea) and analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). Most target compounds were detected in both the Han River samples (63%) and the effluent-dominated creek samples (79%). Iopromide, atenolol, TCPP, TECP, musk ketone, naproxen, DEET, carbamazepine, caffeine, and benzophenone were frequently detected in both river and creek samples, although the mean concentrations in effluent-dominated creek samples (102 ng/L-3745 ng/L) were significantly higher than those in river samples (56 ng/L-1013 ng/L). However, the steroid hormones 17β-estradiol, 17α-ethynylestradiol, progesterone, and testosterone, were not detected (< 1 ng/L) in both the river and creek samples. Numerous target compounds (15) were found to be positively correlated (over 0.8) to the conventional water quality parameters (chemical oxygen demand, biochemical oxygen demand, dissolved organic carbon, and ultraviolet absorbance). Results of this study provide increasing evidence that certain EDCs and PPCPs commonly occur in the Han River as the result of wastewater outfalls.  相似文献   

18.
19.
Numerous studies have reported the presence of trace (i.e., ng/L) organic chemicals in municipal wastewater effluents, but it is unclear which compounds will be useful to evaluate the contribution of effluent to overall river flow or the attenuation processes that occur in receiving streams. This paper presents a new approach that uses a suite of common trace organic chemicals as indicators to assess the degree of impact and attenuation of trace organic chemicals in receiving streams. The utility of the approach was validated by effluent monitoring at ten wastewater treatment plants and two effluent-impacted rivers with short retention times (<17 h). A total of 56 compounds were particularly well suited as potential indicators, occurring frequently in effluent samples at concentrations that were at least five times higher than their limit of quantification. Monitoring data from two effluent-impacted rivers indicated that biotransformation was not important for these two river stretches, whereas photolysis attenuation was possibly important for the shallow river. The application of this approach to receiving waters and water reclamation and reuse systems will allow for more effective allocation of resources in future monitoring programs.  相似文献   

20.
The occurrence of several psychoactive drugs in water resources from north-eastern Spain (NE-Spain) has been evaluated. The drugs were analyzed using ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-ESI-MS/MS) after enrichment by solid-phase extraction (SPE). Most of the studied controlled drugs (8 out of 11) were found in both influent and effluent samples from several wastewater treatment plants. Cocaine and its metabolite were detected in wastewaters at concentrations ranging from 4 ng/L to 4.7 mug/L and from 9 ng/L to 7.5 mug/L respectively while concentrations of amphetamine type stimulatory drugs ranged from 2 to 688 ng/L. Removal percentages were estimated by sampling eight WWTPs (n=4). Cocaine and benzoylecgonine removal percentages were higher than 88% while those of amphetamine type stimulants varied ranging from 40% to more than 99%. Daily variability was also evaluated by performing a sequential survey, which revealed important fluctuations in the concentrations of nicotine, paraxanthine, amphetamine and ecstasy during the week. From the total concentrations found in wastewater influents estimations of the cocaine and ecstasy consumption were performed. For cocaine the results were approximately 14 doses per 1000 inhabitants (15-64 years old) per day and for ecstasy, approximately 4 doses per 1000 young adults (15-34 years old) per day for ecstasy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号