首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis of full-scale fire test experimental data is presented for a small compartment (3×3.6×2.3 m). A square steady fire source is placed in the center of the compartment. There is an open door and a horizontal opening in the roof, so that natural ventilation is established for the well-ventilated fire. A parameter study is performed, covering a range of total fire heat release rates (330, 440 and 550 kW), fire source areas (0.3×0.3 m and 0.6×0.6 m) and roof ventilation opening areas (1.45×1 m, 0.75×1 m and 0.5×1 m). The impact of the different parameters is examined on the smoke layer depth and the temperature variations in vertical direction in the compartment. Both mean temperatures and temperature fluctuations are reported. The total fire heat release rate value has the strongest influence on the hot smoke layer average temperature rise, while the influence of the fire source area and the roof opening is smaller. The hot smoke layer depth, determined from the measured temperature profiles, is primarily influenced by the fire source area, while the total fire heat release rate and the roof opening only have a small impact. Correlations are given for the hot smoke layer average temperature rise, the buoyancy reference velocity and the total smoke mass flow rate out of the compartment, as a function of the different parameters mentioned. Based on the experimental findings, it is discussed that different manual calculation methods, widely used for natural ventilation design of compartments in the case of fire, under-predict the hot layer thickness and total smoke mass flow rate, while the hot layer average temperature is over-estimated.  相似文献   

2.
为研究房间-走廊内烟气流动规律,更直观准确地反映房间内发生火灾后烟气在房间及走廊中的流动状态,为人员疏散及救援提供技术指导,设计小尺寸房间及走廊条件下的烟气流动模型进行实验,并运用FDS火灾模拟软件对相同尺寸的房间及走廊模型烟气流动进行数值模拟。结果显示实验模拟与数值模拟的小尺寸房间及走廊烟气流动规律一致。根据实验及计算机模拟结果给出了火灾初期房间及走廊中人员疏散与自救的若干意见。  相似文献   

3.
Evaporation of water droplets while traveling in hot air layer will be studied. The air-droplet system is analyzed by solving the mass, momentum and energy conservation equations for each phase. The droplet phase is described by the Lagrangian approach. Two conditions of air flow in the smoke layer are assumed. Firstly, as commonly used in modeling fire suppression by water spray, the smoke layer is assumed to be quiescent. Secondly, both gas cooling effect and air entrainment in the water spray cone are included. The properties of gas phase related to evaporation are specific heat capacity, thermal conductivity and dynamic viscosity. All these are evaluated by the one-third rule. The Runge–Kutta algorithm is used to solve the ordinary differential equation group for the droplet motion with heat transfer. Droplet positions, velocities, temperatures and diameters are calculated while traveling in the hot air reservoir. The effects of air temperature, water vapor mass fraction, thickness of hot air reservoir, and initial diameter on the droplet behavior are analyzed. The quantity of heat absorbed by a single droplet is calculated. Results are then calculated for a water spray by taking it has many droplets. The cooling effect of the water vapor produced is considered. Water spray consisting of small droplets should absorb more heat while acting on the hot air layer. The ratio of the heat for vaporization to the total heat absorbed by water can go up to 0.9 when all the droplets are evaporated. Limited experimental data are selected to verify the mathematical model. Predicted results are useful for studying fire suppression by water mist system.  相似文献   

4.
W. K. Chow 《Fire Technology》1989,25(4):364-373
A crude model for estimating the evaporation heat loss due to a sprinkler water spray in a smoke layer is reported. It is found that the evaporation heat loss lies below 11.2% of the convective loss when water travels through a hot gas layer 0.9 m thick and 160°C under normal sprinkler operating conditions. It is also found that the value may go up to 26% if the smoke layer reaches 1.5 m and 273°C.  相似文献   

5.
This work presents smoke measurements and correlations inside and outside of a corridor-like enclosure fires in order to determine the effects of burning on smoke concentrations inside and outside the enclosure. Thirty eight experiments were performed in a three metre long corridor-like enclosure having a cross section 0.5 m×0.5 m, door like openings in the front panel and a gaseous burner located near the closed end. Smoke concentrations were measured at two locations inside the enclosure and also in the exhaust duct of a hood collecting the fire gases from the enclosure. It was found that smoke concentration in the exhaust duct decreased whereas smoke concentration inside the enclosure increased after the flames started moving towards the opening and external burning occurred. This increased smoke concentration inside the enclosure was caused by reversion of the flow pattern inside the enclosure after the flames moved past a point towards the opening. Namely, the flow pattern changed direction behind the flame front in the sense that hot gases in the upper layer were travelling backwards towards the closed end of the corridor thus contributing to smoke increase inside the enclosure. This change of flow pattern was confirmed in all experiments by bidirectional probe velocity measurements in the upper and lower layer as well as by oxygen concentrations and temperature measurements inside the enclosure. These results are useful for CFD validation and specifically applicable for assessing smoke hazards in corridor fires in buildings where smoke concentrations can be much larger than anticipated owing to leakage to adjacent rooms behind a moving flame front.  相似文献   

6.
Motivated by recent demands on regulatory reform, closed form solutions are developed for the filling times and upper layer temperatures for fires in large spaces including the volume expansion term that was neglected in previous similar efforts. The solutions evolve from (a) utilizing the air entrainment to a buoyant plume from a point source having the same convective heat release as the fire and (b) applying an energy balance for the hot layer. Heat losses to the surfaces of the enclosure and provisions for smoke control by natural ventilation are also considered in an approximate way. Although analytic solutions for the filling times exist in the literature if the volume expansion term is neglected, this work is the first to (a) present analytic solutions for the upper layer temperature including the volume expansion term and (b) incorporate heat losses and smoke control by natural ventilation. The present predictions agree with recent numerical results (Fire Sci. Technol. 19(1) (1999) 27), which agree with experimental data and consequently, the present results in turn agree well with experimental data (Fire Sci. Technol. 19(1) (1999) 27). They are also corroborated by asymptotic analysis worked out in Appendix A. For certain large spaces, the results show that critical times for evacuation or rescue operations from fire brigade depend on the upper layer temperature reaching high enough values to cause harm by radiation to occupants or fire fighting rescuers. Thus, critical times in large spaces do not result from the smoke layer descending below a critical height (e.g. 2.1 m from the floor), as they do for small spaces. The present results for large spaces having high ceiling clearance do not agree with CFAST calculations because the entrainment equation for the fire plume in CFAST is different from the one in this work.  相似文献   

7.
The rail based urban transport system is being developed for national capital of India, New Delhi. The smoke control using ventilation in case of fire inside the tunnel, similar to Delhi Metro corridor has been investigated using computational fluid dynamics technique. A section of tunnel having dimensions 400 m long, 5.5 m wide and 6 m high is considered for simulation. The analysis has been carried out by assuming a variable fire source with a peak heat release rate (HRR) of 16 MW, located at the center of the tunnel. Ventilation ducts are located in the ceiling near the tunnel portals and are inclined at 10 degrees to the plane of the ceiling through which fans discharge air. The influence of the fire HRR curve slope on the smoke flow dynamics in a realistic tunnel model fitted with jet injection type longitudinal ventilation system has been investigated. In case of fire two cases are studied: (1) fans activated immediately after detection, (2) fans activated at delayed times to take into account the response time for the fans to achieve its maximum speed. The velocity of supply and exhaust fans necessary to remove smoke in 30 s from the upstream direction is determined. The velocities of fan required to produce desired critical velocity in the longitudinal direction for different HRR of fire is predicted.  相似文献   

8.
以某大型抽水蓄能电站地下厂房为研究对象,进行了自然通风条件下的全尺度火灾试验,并通过分布式测温电缆测量了整体温度分布。根据实测数据,获得了烟气温度随时间的变化规律、上下空间的最高温度分布和烟气分层。试验结果表明:在4、6和10个燃油盘模拟火灾情况下,火灾截面中上部烟层相对于环境的温升分别为1.7,2.3,3.8 ℃,而厂房下部距地面3.5 m高度处的温升分别为7.6,10.8,13.0 ℃。由于向周围环境的持续热损失,烟层最高温度随着烟气的纵向传播而衰减,并且衰减趋势在端壁前方由于烟和热的增强积聚而减速或逆转。大型地下厂房的烟气分层明显,烟气层界面下降高度在20~30 m。  相似文献   

9.
采用大涡模拟和混合分数燃烧模型,对单室火灾进行了数值模拟研究。对混合分数燃烧模型的不足进行了分析,并指出了改进的方向。比较了喷淋和无喷淋状态下单室火灾的烟气发展规律及燃烧产物成分的变化情况。计算结果表明:由于喷淋的加入,可燃物的不完全燃烧性增强,导致烟气中烟灰成分大量增加,二氧化碳等产物的生成量呈减少趋势;对不同燃烧释热率的火灾情况进行了数值模拟,随着火源释热率的增大,室内热烟气的温度增高得更快,热烟气温度层下降的速度越快,下降的高度越低。单室内火灾热烟气的温度分布呈明显的分层现象,可以将场模拟中的烟气层转换为上下两层相互区分的热烟气层和冷烟气层。  相似文献   

10.
通过对海拔为4100m的高海拔隧道进行全尺寸火灾试验,揭示高海拔隧道火灾烟气下沉及温度场变化特征。试验采用三种不同尺寸火源(0.8m2、1.0m2、2.0m2),对隧道火灾烟气蔓延特征、火区最高温度、隧道拱顶纵向温度分布进行研究。试验研究结果表明:隧道火灾试验初期及燃烧稳定阶段,火源附近隧道上层烟气与下层冷空气分界明显,火灾后期烟气下沉严重;较小风速有利于高海拔隧道小规模火灾烟气逆流层纵向和垂向蔓延的控制。隧道火灾温度场研究表明:隧道火灾温升速率随火源热释放率增大而增加;火源附近20m范围内温度衰减速率较快,远火源区域隧道拱顶纵向温度衰减较慢,趋于平缓;通过对火源上方拱顶烟气温度分析,发现隧道火灾探测采用差温报警模式较定温报警模式更加有效,并得出10℃/min的温升速率可基本满足高海拔隧道小规模火灾的初期报警;隧道拱顶纵向温度分布规律导致火源远场烟气下沉严重而近火源区域烟气层化较好的特征。高海拔隧道火灾温度分布特性试验研究,可为高海拔隧道火灾动力特性研究提供依据,为高海拔隧道人员疏散逃生提供指导及建议。  相似文献   

11.
Small longitudinal velocity cannot prevent backlayering in tunnel fire, while excessive longitudinal velocity will destroy stratification of smoke layer and lead to bifurcation flow. As smoke bifurcation flow proceeds, the longitudinal flow is divided into two streams and flow along both sidewalls of the tunnel ceiling. The critical velocity of bifurcation flow is the minimum value at which bifurcation flow starts to occur. To investigate the critical velocity of bifurcation flow, experiments and CFD simulations were conducted. Experiment was carried out in a reduced-scale tunnel, which is 8 m long, 1 m wide and 0.5 m high. The numerical research was performed using FDS. In simulation, the computational region of a tunnel is 200 m long, 10 m wide. The heat release rate (1 MW to 6 MW) and the height (4 m to 8 m) is changed in the 30 simulation scenarios. Theoretical analysis showed that the dimensionless critical velocity of bifurcation flow only depends on the dimensionless heat release rates, and a mathematical equation is proposed. The reduced-scale experiments indicated that the critical velocity of bifurcation flow is 1.48 times that of critical velocity for preventing backlayering, and the coefficient is in agreement with CFD simulation.  相似文献   

12.
Application of FDS to Adhered Spill Plumes in Atria   总被引:3,自引:1,他引:2  
In a recently published article (Poreh et al., Fire Saf J 43(5):344–350, 2008), Poreh et al. carried out a number of experiments in a small-scale atrium. They investigated the mass flow of the spill plume in case of fire emerging from an adjacent room or corridor. Based on these experiments, the equation for the mass flow rates of adhered spill plumes in atria was adjusted. In our article, we repeat the experiments in a computational fluid dynamics (CFD) program. The results agree well, both with the experiments and the suggested formula. After this first validation, large-scale CFD-simulations are carried out. It appears that the equation suggested by Poreh et al. is only valid in the case of a uniform smoke layer depth. If the smoke layer has a more complex configuration, the formula is no longer reliable for the design of the smoke and heat exhaust ventilation system.  相似文献   

13.
This paper concerns the interaction between water sprays and a smoke layer in a corridor, without any interaction with fire activity. Three water sprays are tested, a high-pressure water mist system and two sprinkler systems under different operating pressures. Our study aims to compare the impact of these three sprays on the smoke layer, based on the analysis of temperature and transmittance profiles. Characterization of the smoke layer before spray activation, based on either temperature or transmittance was found to be similar, providing a smoke free layer at around middle height in the corridor. During spray operation, discrepancies were observed in some cases depending on whether the smoke layer was studied based on the temperature or the transmittance profiles. Spray operation may provide gas cooling, resulting in homogeneous temperature profiles, while vertical variations of droplet size and soot or droplet concentration can still induce a variation in transmittance. The impact of water spray on the smoke layer varies with the spray system. For the water mist system and the highest-pressure sprinkler system, the spray operation induces a complete de-stratification with well-mixed steady-state conditions along the corridor as well as strong smoke cooling and visibility alteration. With the lowest-pressure sprinkler system, only a localized alteration of this stratification is observed under the spray, while the environment remains thermally and optically stratified downstream in the corridor despite spray operation. Relationships described in the literature were used to confirm and explain these observations. Ratios were evaluated to compare the drag effect due to the spray and the buoyancy effect related to the fire. All tests provided ratios of drag number over buoyancy number much greater than one. This confirms the ability of these relationships to predict the occurrence of de-stratification. Qualitatively, the highest ratios were found for the high pressure system and for the water mist system, which actually led to the most important de-stratification effects. In contrast, the weaker ratio found for the lower pressure system was still above one, i.e., coherent with a de-stratification which did not affect the whole corridor however.  相似文献   

14.
15.
The hot smoke test is often used for commissioning fire smoke management system in atrium buildings, in which liquid fuel is burnt to generate a buoyant plume mixed with artificial tracer smoke to model a fire smoke. The method is usually costly and often causes safety concerns. This paper studied an alternative method of using a cold smoke test, in which pure helium is used to create the buoyant plume. A method was developed to determine the supply rate of pure helium necessary to achieve the same buoyancy effect as that of the corresponding hot smoke test. Computational fluid dynamics (CFD) simulations of the helium smoke tests were conducted and compared to the measured hot smoke tests in a full-scale naturally ventilated atrium and a sub-scale atrium with mechanical ventilation. A new method was added in the CFD model to track the smoke layer height for the simulations of helium smoke based on the concentrations of smoke and helium. It is found that the predicted smoke layer heights based on the mass fractions of the tracer smoke are generally close to the measured ones in the hot smoke tests of different heat release rates. A non-dimensional temperature in the hot smoke test is also found closely related to the dimensionless helium concentrations in the helium smoke test for the atria modeled. Although the consumption of pure helium for a full-scale helium smoke test can be very high, it is promising to use the pure helium smoke test in the lab-scale experiments as the preliminary tests of full-scale and/or lab-scale testing of real fires.  相似文献   

16.
Fire in underground structures can result in devastating consequences in terms of both economic damage and loss of life. Hydro-electric plants are typically underground windowless structures. In an underground hydropower station, the busbar corridor connects the busbar layer in the main power plant with the main transformer chamber. This structure forms the channel that is crucial for electrical power transmission. In this paper, a computational method, Fire Dynamics Simulator (FDS), was carried out on a model of a two-story busbar corridor structure based on actual fire test results as a validation case. Twenty-four prediction conditions were taken into account to evaluate the original design of the exhausting system and optimize the busbar corridor modeled smoke control scheme. In those predictions five factors were varied: the heat release rate (HRR), the story height, the air change rate (ACH), the exhaust outlet positions and the airflow inlet positions. Since toxic compounds, especially carbon monoxide, endanger evacuating people in fire scenarios, the carbon monoxide (CO) concentration was reported and used throughout this study as an indicator of the safety of occupants in the corridor. Of the five varied factors it was found that the story height and the airflow inlets with natural ventilation influenced the smoke suppression and control. For the story height of 6.0 m, the filling time is 52 s more than the story height of 4.5 m. The CO concentration of opening set upstairs only is twice as much of the design condition. Opening set downstairs only can exhaust smoke faster for occupied area.  相似文献   

17.
为研究室外风对走廊中火灾烟气分层特性和自然排烟的影响,在相似原理的基础上开展了1/3 缩尺寸实验。通过改变火源功率、室外风速和外窗尺寸,结合对走廊火灾烟气分层特性和自然排烟效果的判断,找出使分层失效的临界室外风速以及使自然排烟失效的临界室外风速,运用量纲分析和数据拟合的方法分析无量纲火源功率和无量纲临界失效风速之间的关系。研究发现,温度分层无量纲临界失效风速与无量纲火源功率呈现良好的线性关系,温度分层临界失效风速随窗口尺寸减小而增大;自然排烟无量纲临界失效风速与无量纲火源功率呈现显著的对数函数关系,窗口尺寸相同时,火源功率越大,自然排烟临界失效风速越大。  相似文献   

18.
The paper deals with interaction between water mist and hot gases in a longitudinally ventilated tunnel. The work aims at understanding the interaction of mist, smoke and ventilation.The study is based on one intermediate tunnel test and an extensive use of the computational code Fire Dynamics Simulator (FDS, NIST). The approach consists first of reconstructing the test with the CFD code by defining the relevant numerical parameters to accurately model the involved water mist system. Then, it consists of handling from the local data the complicated flows generated by the water mist flooding on the one hand and by fire and ventilation on the other hand. The last stage consists in quantifying each mechanism involved in interaction between water mist and hot gases. There are three main results in this study. Firstly, the CFD code prediction is also evaluated in this configuration, with and without water mist. Before the mist system activation, the agreement is satisfactory for gas temperatures and heat flux. After the activation time, the CFD code predicts well the thermal environment and in particular its stratification. Secondly, water mist plays a strong thermal role since in the test studied, roughly half of the heat released by fire is absorbed by water droplets. Thirdly, heat transfer from gaseous phase to droplets is the main mechanism involved (73%). The remaining heat absorbed by droplets results from tunnel surface cooling which represents (9%) and radiative attenuation (18%).  相似文献   

19.
太阳能采暖水箱温度分层的仿真分析   总被引:1,自引:0,他引:1  
本文通过对太阳能采暖系统的理论分析,建立了采暖水箱模型,利用CFD软件在有无辅助加热的两种工况下,模拟水箱内部流动、换热、温度分层过程,结果表明,太阳能集热器管路水流速在0.01~0.05m/s时,水箱内部分层非常明显,水箱运行内部扰流小;流速0.09~0.35m/s,随着流速增大,水箱分层越来越不明显,水箱顶端的高温层被破坏。  相似文献   

20.
为研究低气压环境下飞机货舱火灾发展至轰燃的内在规律,利用1/4体积标准飞机货舱在海拔4 260 m、气压60 kPa的环境下开展了一系列火灾轰燃实验。选择航空煤油作为主燃料,以单壁瓦楞纸箱被引燃作为轰燃发生的判据,研究低气压环境下不同火源尺寸对轰燃的影响。通过对飞机货舱内热烟气层平均温度、地板所受辐射热通量、燃料热释放速率和烟气体积分数的测量和分析,探讨低气压环境下轰燃发生的临界条件和表现形式。结果表明,火源尺寸的增大提高了轰燃发生的可能性和轰燃的剧烈程度,在达到引发轰燃所需的临界火源尺寸后,继续增大火源尺寸会使轰燃发生的时间提前;60 kPa压力环境下飞机货舱轰燃所需的临界条件为:上部热烟气层平均温度达到553.5 ℃,地板所受辐射热通量达到19.85 kW/m2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号