首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earth pressure on a pipe crown is one of the most significant operational loads considered in the design of Polyethylene (PE) pipes installed by Horizontal Directional Drilling (HDD). The amount of earth pressure depends on the long-term bore conditions as well as the development of a sliding wedge resulting from deformation of the bore due to the overcut and deformation of the PE pipe itself under loadings. Current practices for designing PE pipes in North America is based upon American Society for Testing and Materials (ASTM) F 1962, which is a modified version of Terzaghi’s arching model for earth pressure estimation. There are some concerns regarding the inaccuracy of the ASTM F 1962 arching model. In this study, the ASTM F 1962 arching model for the design of PE pipes installed by HDD is reviewed and compared with other available standards. It was observed that, the ASTM F 1962 arching factor decreases as the soil friction angle increases from 0° to 40°, however, it was mathematically proven that the respective equation shows a minimum at a friction angle of 26.6°, which does not seem to have a physical interpretation. The ASTM F 1962 arching model was also compared with some of the European standards for HDD pipeline design. This study revealed that, the ASTM F 1962 arching model contains some inconsistencies, which are due to the improper modification of Terzaghi’s arching model. Discussions are provided on the issues that exist with regard to the current ASTM F 1962 arching model including the effects of cohesion and soil type on the arching factor. Results of using ASTM F 1962 and the Dutch arching factors in design of some sample PE pipes in three soil conditions for operational loads are also presented. This paper provides some clarifications on the ASTM F 1962 standard, which will assist engineers and contractors in designing PE pipes installed by HDD more accurately.  相似文献   

2.
《Soils and Foundations》2023,63(3):101323
As an ancient underground hydraulic engineering facility, the Qanat system has been used to draw groundwater from arid regions. A qanat is a horizontal tunnel with a slight incline that draws groundwater from a higher location and delivers it to lower agricultural land. During long-term water delivery, the qanat tunnel has experienced different degrees of aging and collapse, which may result in the significant ground settlement and even disasters. This paper developed a two-dimensional laboratory system to investigate the influence of progressive failure on the stability of deeply buried qanat tunnels. The developed system is fully instrumented with a particle image velocimetry (PIV) system and earth pressure and displacement monitoring. A special cylindrical membrane tube is designed and connected to an advanced pressure–volume controller to simulate the step-wise failure process of the tunnel. Three model tests were conducted on a dry sand considering the buried qanat tunnels at three different depths. Experimental results clearly show the progressive evolution of soil arching effect in the dry sand associated with the progressive failure of the tunnels. The failure of the Qanat ground starts from the vault and develops upwards, which is closely related to the evolution of stress contour at three consecutive stages. Ground surface settlement and volume loss corresponding to three burial depths were compared. A deeply buried qanat tunnel has a small effect on surface settlement. Earth pressure evolution on the 2D plane shows the load redistribution when the qanat collapses. The maximum arch and the initial point of the limit state correspond to a volume loss of 12.5 % and 50 %, respectively. For the collapse of the deep buried qanat tunnel, ground earth pressure evolution can be divided into a stress-increasing region, stress-decreasing region, and no redistribution region. Furthermore, a multi trap-door model considering soil expansion is proposed to describe the progressive failure behavior and its effects.  相似文献   

3.
土压力计在量测土体自由场应力时,由于土压力计壳体的刚度远大于周围土体介质的刚度,导致在土压力计壳体圆周的上方产生被动土拱效应。被动土拱效应使土压力计周围土体荷载部分传递到土压力计上,致使土压力计的量测值大于真实值。根据土拱理论推导了被动土拱效应引起的匹配误差计算公式,与传统的匹配误差计算公式相比,新推导公式考虑了土体的内摩擦角和黏聚力,揭示了土体与土压力计的相互作用。提高土压力计外侧土体的密实度,降低土压力计上部土体的密实度可以消减被土拱效应;增大土压力计直径与膜片直径的比值可以减小被动土拱效应对量测误差的影响。  相似文献   

4.
This paper presents a 2D analysis model based on limit analysis and slip-line theories for the face stability of a circular tunnel in purely cohesive soil. The analysis model depends on the ratio of cover depth C to tunnel diameter D. When C/D is equal to 0.5, the mechanism consists of three blocks, namely, Zone I, Zone II, and Zone III. When C/D is greater than 0.5, the mechanism consists of four blocks, namely, Zone I, Zone II, Zone III, and a possible Zone IV. Zone II is a transition zone satisfying the normality conditions. The possible Zone IV is a Rankine zone that is subjected to the influence of the vertical soil arching effect appearing at the top of Zone III. The criterion for the collapse thickness limit of the tunnel is proposed based on Terzaghi’s theory of relative soil pressure. The results show that significant improvements have been made to the existing solutions using the proposed failure mechanism for the face stability of circular tunnels in purely cohesive soil.  相似文献   

5.
采用弹塑性理论应力反馈算法,研发材料本构模型子程序,将土的应力路径本构模型嵌入大型有限元软件ABAQUS,通过对三轴压缩和三轴拉伸试验条件的数值模拟,验证了子程序的精度。利用二次开发后的ABAQUS对隧道开挖过程进行了三维有限元分析,从不均匀变形、应力重分配、应力路径和地表沉降规律四个方面研究了由重力引起的大主应力改变产生的土压力拱效应。研究结果表明:隧道开挖过程中,围岩土体中的应力路径变化非常复杂,并受几何位置和开挖进程影响;隧道埋深较浅时,土压力拱作用至地表,尚未完全发挥支撑作用,表现为隧道上方土体的整体沉陷变形;隧道埋深较深时,土压力拱的作用未影响至地表,充分发挥了支撑作用,表现为隧道上方土体的塌落变形;土压力拱的作用范围受隧道埋深影响不大,约为隧道半径的3倍。  相似文献   

6.
基于颗粒流椭球体理论的隧道极限松动区与松动土压力   总被引:1,自引:0,他引:1  
砂土地层中隧道所受土压力与土拱效应及松动区的发展密切相关,而砂土地层拱效应大小又与砂土颗粒流动规律相关。基于颗粒流椭球体理论,提出了砂土中隧道松动区的计算方法,并对Terzaghi松动土压力计算公式进行了改进。研究表明:与Terzaghi土柱理论假定的直立滑动面不同,基于颗粒流的砂土隧道松动区为细长的椭圆或该椭圆的一部分,且其形状及大小随偏心率、松动系数而变化,即随砂土颗粒形状、级配、密实度等地层特性而变化;松动区竖直滑移面上的侧压系数是小于Terzaghi的建议值。最后,通过与相关文献的离心模型试验结果进行了对比分析,验证了该方法的合理性,该成果可用于砂性地层中深埋地下管道和隧道的垂直土压力的计算。  相似文献   

7.
芮瑞  黄成  夏元友  胡港  夏晓龙 《岩土工程学报》2013,35(11):2082-2089
现有的桩承式路堤荷载传递计算方法主要依据3类土拱效应力学计算模型。由于宏观土拱形态观察的难度较大,现有计算方法普遍缺乏对不同填料与参数下拱效应传力机制以及宏观土拱拱形参数的深入探讨。采用自制的试验装置对砂填料桩承式路堤土拱效应模型进行探讨,进行了3组不同桩距比下3种填土高度的模型试验。模型试验装置配备了位移控制装置模拟与精确控制桩间土下沉,在下沉过程中连续、同步的采集土压力以及砂箱内部填料的照片,并通过摄影测量技术获取全场位移数据。通过对桩土应力比曲线特征以及曲线特征点所对应的填料颗粒位移图的综合分析,探讨了砂填料桩承式路堤拱效应传力机制,揭示了填料内部存在的初始三角形松动滑移面。基于此提出了初始三角拱力学计算模型,分析得到了滑移面角度随桩距比变化的规律,并利用滑移面夹角统计数据确定了拟合计算公式,通过力学推导建立了适用于砂填料桩承式路堤的桩土应力比计算方法。通过与Rogbeck法、BS8006法、Terzaghi法以及模型试验实测数据的对比,验证了计算方法的合理性。  相似文献   

8.
盾构隧道垂直土压力松动效应的颗粒流模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对比室内三轴试验和颗粒流程序双轴数值试验结果,确定了颗粒流模拟砂土的细观参数;通过对室内挡板下落试验的颗粒流数值模拟,验证了颗粒流模拟土拱效应的可行性。在此基础上对盾构隧道垂直土压力的松动效应进行了颗粒流模拟,分析了不同盾尾空隙、不同埋深、不同直径和不同围岩时作用在管片上的土压力、土体位移和土体颗粒接触力的变化情况。结果表明,土拱效应主要发生在隧道上部1~2倍隧道直径的范围内,隧道顶部土体通过土拱效应可大幅度减少作用在隧道上的土压力。  相似文献   

9.
传统的竖井施工方法对居民生活、环境及周边交通的影响大,在此背景下,竖向顶管技术得以快速发展.基于现有相关研究,设计并发明了一种竖向顶管室内模型试验装置,考虑了不同覆土高度、不同千斤顶顶升速度以及土层含水与否3种影响因素对竖向顶管施工的影响,研究盾构隧道内竖向顶管施工引起的盾构隧道内侧变形及地表竖向位移变化规律.研究结果...  相似文献   

10.
采用改进的离散元商业软件PFC2D对砂土层中管片周围的土压力进行了大量的数值模拟,重点研究了埋深、尾隙等因素对管片周围土压力分布的影响。研究结果表明:尾隙存在时,隧道顶部的土体产生了不均匀沉降,导致压力拱效应的产生;隧道顶部至地表出现转动加剧区域;应力路径变化过程表明,隧道周围土体经历了先卸载后加载的变化过程;在应变路径变化曲线上可将管片周围土体的变形划分为三个变化阶段。  相似文献   

11.
曲线顶管施工技术在市政管线工程中得到越来越广泛的应用。在分析曲线顶管施工机理的基础上,提出并对比分析了3种管节纠偏方案,进而结合主动式纠偏方案的施工特点,对三维曲线顶管施工过程中管土间挤压作用力进行计算分析,并推导了管节顶进摩阻力计算公式,其后对管线平面夹角、管线半径及管径大小3个摩阻力影响因素进行单因素分析。考虑管外注浆对管土接触状态的影响,进而引入土压力作用系数对顶进摩阻力计算公式进行修正,并通过对比分析顶进摩阻力的现场实测值、规范建议值及公式计算值,给出了土压力作用系数的建议取值范围。研究表明:主动式纠偏方案在管节姿态调整、施工扰动控制及管身衬砌受力等方面优于其他两种纠偏方案;顶管施工过程中管土间的挤压作用力呈三维复杂状态,不能进行简单的叠加;管线平面夹角对管节转动摩阻力有显著影响,管线半径对侧向顶推摩阻力和管节转动摩阻力均有一定的影响,而管径大小则主要影响地层土压力摩阻力的数值;管土接触状态是真实存在的,其土压力作用系数的取值范围大致在0.2~0.6之间。  相似文献   

12.
基于管土接触特性的顶进力计算模型分析   总被引:1,自引:0,他引:1  
顶进力是顶管工程中管道结构设计、顶管机选型和工作井结构设计的决定性参数之一。为了更加准确地计算顶进力,假设泥浆压力作用下孔壁保持稳定,管道与孔壁土体发生部分接触,采用协调表面Persson接触模型分析管土接触角度和接触压力分布规律,在此基础上考虑管浆摩阻力影响推导出相应的顶进力计算公式。结果表明:管土接触角度和接触压力分布受管道和地层力学参数影响,软土层中管土接触角度可近似取180°定值,接触压力合力约为管道自重的1.35倍;当管道与岩层力学性质接近时,管土接触趋于点接触状态,接触压力的合力为管道自重,且工程实测顶进力与公式预测值相一致,证明其具有适用性。  相似文献   

13.
针对上海软土地区深埋盾构开挖所引起的土压力时效性发展规律,选取4倍直径埋深盾构,布设土压力全断面长期监测点,获取盾构开挖阶段及后期固结蠕变阶段的土压力数据,以得到深部地层的土压时效变化规律。通过现场试验可得,盾构开挖所采取的土仓压力按照理论静止土压力取值时,刀盘周围会形成半径为1~1.5D的被动土拱效应作用区域,土拱范围内会产生20%的被动土压力增幅,土拱以外的范围不受开挖扰动影响。盾构掘进所产生的被动土拱挤压效应在盾尾注浆浆液硬化后开始逐渐衰减,衰减主要作用阶段为开挖后1~3年,深层土体衰减后进入长期蠕变阶段。试验表明,软土深部地层盾构开挖会产生一定程度的土拱效应,且土拱效应在后期固结蠕变过程中逐步衰减,可为今后软土深部地层盾构隧道设计及施工的土压力取值提供一定参考依据。  相似文献   

14.
矩形顶管施工引起的地面沉降变形研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以南宁市轨道交通1号线南湖站Ⅰ号过街通道顶管工程为背景,分别考虑顶管机及后续管节对土体的作用力引起开挖面周围土体的施工时变形、土体损失引起地面永久沉降、注浆对土体损失补偿引起的地面抬升、地层中超孔隙水压力消散发生失水固结效应引起的工后沉降等因素,揭示了在注浆压力作用下矩形顶管隧道周围土体的变形模式,推导了由注浆填充引起的土体竖向变形计算方法,给出了扰动范围土体内超孔隙水消散引起的工后固结沉降的计算公式。运用Mindlin弹性理论解、随机介质理论、分层总和法分别对该工程由土体应力状态变化、地层损失、注浆填充和失水固结4个方面引起的地面变形进行计算,根据计算结果与实测数据的对比分析,对矩形顶管施工扰动引起的地表沉降变形特性进行系统研究,叠加后的计算结果与实测数据变化规律基本一致,且数值吻合较好。  相似文献   

15.
考虑泥浆触变性和管土接触特性的顶管摩阻力公式   总被引:2,自引:0,他引:2  
张鹏  谈力昕  马保松 《岩土工程学报》2017,39(11):2043-2049
顶进力是顶管工程设计和施工的重要参数,而顶管侧摩阻力对顶进力起控制作用,其大小主要受管土接触和管浆接触特性影响。为了更加准确地计算顶管摩阻力,假设隧洞孔壁在泥浆压力作用下保持稳定,管道周围同时存在管土接触和管浆接触,采用协调表面Persson接触模型分析管土接触特性,得出考虑接触压力分布影响的管土摩阻力;然后利用半无限弹性体中柱形圆孔扩张理论分析注浆压力对泥浆套厚度的影响,并结合泥浆触变性和流体力学平行平板模型计算管浆摩阻力。在此基础上考虑管道与隧洞的相对位置,同时将管道顶进时的滑动摩擦阻力作为下限值,顶管重启动时的静摩擦阻力作为上限值,总结出直线和曲线顶管摩阻力公式。通过与工程实例数据对比,结果表明该计算公式下限值与实测值最接近,证明其适用性。  相似文献   

16.
软土盾构深埋隧道竖向荷载的选取直接关系到工程的经济性与安全性。在软土地层的盾构隧道设计是否需要考虑土拱效应,关系到盾构设计的荷载取值。从应力场变化和不均匀变形的角度,分析土压力拱的作用机理,得到管-土刚度埋深对"土拱效应"的影响。软土中盾构隧道埋深越大,拱效应发挥越充分,但土拱效应比例值与埋深并非线性关系。盾构在软土2倍直径埋深及以下深部地层中开挖,土拱效应开始发挥作用。当埋深达4D时,拱效应发挥至23%。埋深范围与软土拱效应比例的对应,对软土隧道竖向荷载的取值有一定指导意义,可为后期软土不同埋深的盾构设计提供依据。  相似文献   

17.
《Soils and Foundations》2004,44(5):37-49
Three-dimensional model tests of tunnel excavation and the corresponding numerical analyses were carried out to investigate the influence of tunnel excavation on surface settlement and earth pressure surrounding a tunnel. Numerical analyses were performed with the finite element method using elastoplastic subloading tij model. Two types of apparatuses were used in the model tests, namely-trap door apparatus and pulling out tunnel apparatus. The minimum excavation length along the excavation direction is 8 em in the trap door apparatus. However, the process of real tunnel excavation is more continuous. For simulating real tunnel excavation in 3D, a new apparatus was developed, which is called as the pulling out tunnel apparatus. This apparatus can simulate tunnel excavation in sequential way. Both experiments and analyses were conducted with various ground depths for simulating the influence of soil cover on tunnel excavations. Surface settlements are measured at the transverse cross-section of the ground. Earth pressures at the top of the tunnel in the trap door apparatus are measured. However, in the tests performed with the pulling out tunnel apparatus, earth pressures are measured adjacent to the tunnel cross section. In this paper, the effects of 3D excavation on surface settlements and earth pressures are discussed. It is revealed that arching is formed in both transverse and longitudinal directions of tunnel excavation. Numerical results show very good agreement with the results of the model tests. In the three-dimensional analyses performed in a sequential way, earth pressure is almost zero at the excavation front, irrespective of the soil cover. In 2D analyses and 3D analyses using the trap door apparatus, the earth pressure at the excavation front does not vanish, as observed in 3D sequential analyses.  相似文献   

18.
徐震 《特种结构》2010,27(4):110-113
本文在介绍了顶管用钢筋混凝土管道的竖向土压力计算的太沙基筒仓模型、马斯顿沟埋式模型的基础上,结合有关国家规范关于管顶竖向土压力计算公式和部分参数取值的规定,对我国顶管技术规程在使用过程中遇到的一些问题进行了探讨,并提出了一些建议。  相似文献   

19.
潘伟强 《岩土工程学报》2019,41(Z1):201-204
依托上海14号线桂桥路站管幕段实例工程,对管幕群顶管顶进施工过程地面沉降情况进行监测,分析群顶管施工对地面沉降的影响,在此过程中对本工程采用水土分算或合算进行讨论。根据顶进过程实际工况和监测数据,分析管幕群顶管施工影响地面的原因,提出相应控制措施。结果表明:①管幕群顶管施工引起最大地面沉降出现在始发井出加固区区域;②在本工程中采用水土合算计算正面土压力较为符合实际情况;③管幕群顶管施工过程中影响地面变形的因素主要包括前舱压力、顶进速度、洞门止水、管壁摩擦和同步注浆等方面。  相似文献   

20.
采用极限分析上限法,基于内外能耗守恒原理,通过构建考虑隧底隆起的斜坡地段浅埋隧道破坏模式,推导出围岩压力的计算式,并通过典型算例重点分析了典型因素对隧道围岩稳定性的影响。研究结果表明:基于泰沙基极限平衡法进行隧道围岩支护设计较为保守,不考虑隧底隆起的极限分析方法次之考虑隧底隆起极限分析方法的风险最大;斜坡地表倾角增大对浅埋隧道稳定性有着不可忽视的不利影响;围岩压力随岩土侧压力系数减小、埋深增大、断面尺寸加大而增大;岩土黏聚力增大、内摩擦角增大对提高浅埋隧道围岩稳定性有积极作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号