首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study presents a calibration process of three-dimensional particle flow code (PFC3D) simulation of intact and fissured granite samples. First, laboratory stress–strain response from triaxial testing of intact and fissured granite samples is recalled. Then, PFC3D is introduced, with focus on the bonded particle models (BPM). After that, we present previous studies where intact rock is simulated by means of flat-joint approaches, and how improved accuracy was gained with the help of parametric studies. Then, models of the pre-fissured rock specimens were generated, including modeled fissures in the form of “smooth joint” type contacts. Finally, triaxial testing simulations of 1 + 2 and 2 + 3 jointed rock specimens were performed. Results show that both elastic behavior and the peak strength levels are closely matched, without any additional fine tuning of micro-mechanical parameters. Concerning the post-failure behavior, models reproduce the trends of decreasing dilation with increasing confinement and plasticity. However, the dilation values simulated are larger than those observed in practice. This is attributed to the difficulty in modeling some phenomena of fissured rock behaviors, such as rock piece corner crushing with dust production and interactions between newly formed shear bands or axial splitting cracks with pre-existing joints.  相似文献   

2.
张荣 《城市勘测》2011,(4):17-22
基于GIS、三维建模、虚拟仿真等相关技术,建立了广州市城市三维景观地图数据库,开发了三维景观地图网站,并应用于第16届广州亚运会地图网站,本文对网站数据内容及模型标准(包括数据范围和内容、三维模型数据精度、三维场景效果)、三维景观地图制作流程(包括数据源获取、地物CAD建模、场景渲染及拼接)、网站功能(三维景观地图的查...  相似文献   

3.
The construction of the North Square Shopping Center of the Shanghai South Railway Station is a large scale complex top-down deep excavation project. The excavation is adjacent to several current and newly planned Metro lines, and influenced by a neighboring Exchange Station excavation. The highly irregular geometry of this excavation greatly increases the complexity in 3D Finite Element modeling. The advanced numerical modeling described in this paper includes detailed structural and geotechnical behavior. Important features are considered in the analysis, e.g., 1) the small-strain stiffness of the soil, 2) the construction joints in the diaphragm wall, 3) the shrinkage in the concrete floor slabs and beams, 4) the complex construction sequences, and 5) the shape effect of the deep excavation. The numerical results agree well with the field data, and some valuable conclusions are generated.  相似文献   

4.
节理岩体力学参数及其尺寸效应一直以来都是岩体研究的热点和难点,但对于基于结构面网络模型进行数值模拟的研究尚未见报道。笔者以小湾坝基卸荷岩体为例,在对现场节理进行大量统计的基础上,分析出节理特征值的分布函数,再运用蒙特卡罗方法建立了其结构面网络模型。在此基础上,利用编制的接口程序和现有的FLAC3D岩土分析软件,实现了对随机节理结构面网络模型的不连续位移数值模拟。模拟结果表明:小湾坝基卸荷岩体变形模量与岩体尺寸的关系服从负指数分布,而强度参数与岩体尺寸的关系基本服从负幂函数分布,其结果与现场斜面载荷试验及经验评估参数结果较为接近。  相似文献   

5.
Vast data from the drilling and geophysical prospecting are reliable original information to describe the space state of engineering rock mass, and one of the main difficulties in three-dimensional (3D) modeling of engineering rock mass is the processing of the primary data. From the view-point of 3D modeling, the engineering rock masses are classified as four basic types according to their geometric characteristics of geologic structure: (1) continuum rock mass; (2) discontinuous rock mass; (3) overturned fold rock mass and (4) intrusive rock mass. Because drilling data are very important to describe the characters of multi-scale of the spatial data for rock mass, the rule of how to process drilling data is developed to help appropriately display them in the viewpoint of 3D space. According to the characteristics of rock mass layers, the processing method of drilling data for 3D modeling of engineering rock masses, along with the layer thicknesses, is also proposed, including the evaluation rules and the extensive direction for original borehole data. By this method, the typical 3D data modeled is completed and the model form of the engineering rock mass is developed. By this example, it is finally verified that the method presented is successful and feasible to process 3D engineering rock mass. __________ Translated from Chinese Journal of Rock Mechanics and Engineering, 2005, 24(11): 1 821–1 826 [译自: 岩石力学与工程学报]  相似文献   

6.
Abstract: This article is devoted to the construction of a computational nonlinear thermomechanical model of large light partition walls made up of cardboard‐plasterboard‐cardboard (CPC) plates screwed to a metallic frame, and is submitted to mechanical and thermal loadings induced by fire. The computational model, based on experimental analysis and a probabilistic modeling, is developed for the prediction of a large light partition wall for (1) its linear thermal behavior, (2) its nonlinear mechanical behavior, and (3) its nonlinear thermomechanical behavior.  相似文献   

7.
粗糙节理剪切性质的颗粒流数值模拟   总被引:2,自引:2,他引:0  
 在二维颗粒流程序PFC2D中生成粗糙节理剖面并模拟其剪切性质。通过数值直剪试验,从细观角度观察节理的宏观破坏过程。作为模型试验的一种补充,可以观测到粗糙表面微凸体的剪切破坏及微裂隙发育的情况。宏观剪切区域的产生主要是由细观剪裂纹的累积形成的,剪切破坏区域集中在爬坡效应显著的位置,即剪切应力集中的区域,剪切过程中形成的剪裂纹的数量在出现剪切峰值应力后显著增加,此时粗糙节理面的破坏最为显著。颗粒流数值试验能较好地再现模型试验的结果,采用PFC2D数值试验能部分替代真实岩石试样的模型试验,将其作为一种预测真实岩石节理抗剪强度的手段,从而解决天然粗糙节理形貌难以重复的问题。  相似文献   

8.
Abstract: Construction system modeling aims to improve construction work performance by tracking the dynamic behaviors of construction systems. More accurate system modeling can be achieved by considering the mutual effects of construction operations on the context level of the system. Hybrid models of discrete event simulation (DES) and system dynamics aim to capture these mutual effects to provide model developers with more precise system analysis. Although system dynamics models are used to capture the behavior of the system at the context level, DES models are utilized to capture construction operations. The potential benefits of utilizing hybrid models for complex systems have been argued and established, but there are still limited studies that have utilized this modeling approach for real construction systems. In this research, we have attempted to identify the challenging issues that have caused this problem and to confront this problem by proposing a hybrid framework and architecture, which address these challenges. To verify the effectiveness of the new model, the performance of the proposed hybrid modeling framework and architecture has been tested by applying the proposed model in a real‐scale construction‐related system.  相似文献   

9.
A simple model for stress-induced anisotropic softening of weak sandstones   总被引:1,自引:0,他引:1  
Weak sandstones possess deformational behavior different from hard rocks; these phenomena include shear dilation and softening of the deformational moduli. It has been found previously that under hydrostatic loading, the bulk modulus increases as confining pressure arises; and that under shear loading, the weak sandstone may transform from its original isotropy to a stress-induced anisotropic material, and the deformational modulus can accordingly be softened as well. These phenomena contribute to the increase of crown settlements during tunnel excavations, and account for several cases of tunnel squeezing. Consequently, a model capable of simulating major deformational characteristics of weak sandstones is needed for engineering purposes. A simple yet innovative constitutive model is accordingly proposed. This proposed model is characterized during the simulation as having: (1) non-linear volumetric deformation under hydrostatic loading; (2) significant shear dilation prior to the failure state; (3) isotropic stiffening of deformational moduli under hydrostatic loading; and (4) anisotropic softening of deformational moduli under shearing condition.The proposed model was formulated based on the linear elastic model, and it accounts for the variations of moduli E and G through different loading conditions. It was found that the proposed model is able to closely simulate the actual deformational characteristics of weak sandstones. In addition, the proposed model only needs six material parameters, and all these parameters can be easily obtained from experiments. This model was then incorporated into a finite element program and was used to analyze a squeezing tunnel case.  相似文献   

10.
姜海波  陈黎  危春根  龚景森 《工业建筑》2012,(Z1):101-105,110
提出一种有限元模型,用于体外预应力节段预制试验梁力学性能数值分析。该有限元模型用ANSYS通用分析软件中的SOLID65单元建立试验梁的3D实体模型,以接触单元模拟节段之间的干接缝,用节点耦合法实现体外预应力束与混凝土梁之间的连接。考虑混凝土材料非线性和几何非线性,通过数值模拟分析揭示试验梁的结构行为、混凝土接缝处的应力变化规律和裂缝张开情况。该有限元模型研究了预应力配束形式、体外预应力二次效应和转向处滑移对试验梁弯曲力学性能的影响。数值分析揭示了在荷载300kN以前,节段接缝处于受压状态;在300kN以后,裂缝张开是影响试验梁力学性能的主要因素。研究结果可用于预制节段桥梁的设计。  相似文献   

11.
To provide realistic predictions of mechanized tunnel excavation‐induced ground movements, this research develops an innovative simulation technique called hybrid modeling that combines a detailed process‐oriented finite element (FE) simulation (submodel) with the computational efficiency of metamodel (or surrogate model). This hybrid modeling approach has three levels. In Level 1, a small scale submodel is cut out from the global model and the continuous simulations are conducted in this submodel. Level 2 deals with identification of uncertain soil parameters based on the measurements (e.g., surface settlements) during tunnel excavation. In Level 3, the tunneling process parameters (e.g., grouting pressure) can be optimized to control tunneling‐induced ground movements or building deformations according to the design criterion. The proposed hybrid modeling approach is validated via a 3D numerical simulation of mechanized tunnel excavation. The results show the capability of the proposed approach to provide reliable model responses in the near field around the tunnel with reduced computational costs.  相似文献   

12.
节理表面形貌和接触状态对节理剪切力学性质有重要的影响。用砂浆材料的单轴压缩试验和光滑节理直剪试验得到材料和光滑节理的宏观力学性质参数,对颗粒流数值模拟的节理细观力学性质参数进行标定。用颗粒流离散元数值软件(PFC2D)构建人工粗糙节理表面形貌,对不同表面形貌的节理在不同接触状态下的剪切强度性质进行颗粒流直剪数值模拟试验,获得其峰值剪切强度。同时进行人工材料节理直剪试验,与颗粒流直剪数值模拟试验结果进行对比分析,数值试验与直剪试验结果吻合较好,验证了颗粒流直剪数值模拟试验与直剪试验具有同等的精度,可以作为各种表面形貌的节理在不同法向应力水平下抗剪强度研究的一种补充方法,以解决节理直剪试验中表面形貌损失对其剪切强度的影响,也可以在少量节理直剪试验的基础上,预估相同形貌的节理在不同接触状态下的剪切强度性质,同时还可以在现场测定不同粗糙度的节理表面形貌,预估其在不同接触状态、不同法向应力下的剪切力学性质。从而解决节理直剪试验中在相同形貌节理试件取样和制备困难的问题,且具有经济、方便、快捷、可重复性强等特点。  相似文献   

13.
The article introduces a novel platform for conducting controlled and risk‐free driving and traveling behavior studies, called Cyber‐Physical System Simulator (CPSS). The key features of CPSS are: (1) simulation of multiuser immersive driving in a three‐dimensional (3D) virtual environment; (2) integration of traffic and communication simulators with human driving based on dedicated middleware; and (3) accessibility of multiuser driving simulator on popular software and hardware platforms. This combination of features allows us to easily collect large‐scale data on interesting phenomena regarding the interaction between multiple user drivers, which is not possible with current single‐user driving simulators. The core original contribution of this article is threefold: (1) we introduce a multiuser driving simulator based on DiVE, our original massively multiuser networked 3D virtual environment; (2) we introduce OpenV2X, a middleware for simulating vehicle‐to‐vehicle and vehicle‐to‐infrastructure communication; and (3) we present two experiments based on our CPSS platform. The first experiment investigates the “rubbernecking” phenomenon, where a platoon of four user drivers experiences an accident in the oncoming direction of traffic. Second, we report on a pilot study about the effectiveness of a Cooperative Intelligent Transport Systems advisory system.  相似文献   

14.
The behaviour of steel joints is complex and requires the proper consideration of a multitude of phenomena, ranging from material non-linearity (plasticity, strain-hardening), non-linear contact and slip, geometrical non-linearity (local instability) to residual stress conditions, and complicated geometrical configurations. The component method is widely accepted as the practical approach in predicting the behaviour of steel joints and it provides detailed procedures to evaluate the strength and initial stiffness of steel joints, as specified in Eurocode 3.Current safety concerns for steel structures require that steel joints are designed to perform adequately under a wider range of loading conditions: besides standard static loading conditions, fire and seismic loading must often be considered. In addition, robustness requirements impose that joints present a minimum level of resistance for any arbitrary loading. Predicting the 3-D behaviour of steel joints under arbitrary loading must thus be achieved in a practical way.This paper presents the results of a series of experimental developments that attempt to contribute to the knowledge of the 3D behaviour of steel joints, under static and dynamic conditions, and to discuss a possible framework for these general conditions that is in line with the principles of the component method.  相似文献   

15.
We describe a framework for developing response recommendations to unexpected toxic pollutant releases in commercial buildings. It may be applied in conditions where limited building- and event-specific information is available. The framework is based on a screening-level methodology to develop insights, or rules-of-thumb, into the behavior of airflow and pollutant transport. A three-stage framework is presented: (1). develop a building taxonomy to identify generic, or prototypical, building configurations; (2). characterize uncertainty and conduct simulation modeling to predict typical airflow and pollutant transport behavior; and (3). rank uncertainty contributions to determine how information obtained at a site might reduce uncertainties in the model predictions. The approach is applied to study a hypothetical pollutant release on the first floor of a five-story office building. Key features that affect pollutant transport are identified and described by value ranges in the building stock. Simulation modeling provides predictions and uncertainty estimates of time-dependent pollutant concentrations, following a release, for a range of indoor and outdoor conditions. In this exercise, we predict concentrations on the fifth floor to be an order of magnitude less than on the first, coefficients of variation greater than 2, and information about the HVAC operation and window position most reducing uncertainty in predicted peak concentrations.  相似文献   

16.
High levels of humidity in buildings lead to building pathologies. Moisture also has an impact on the indoor air quality and the hygrothermal comfort of the building’s occupants. To better assess these pathologies, it is necessary to take into account the heat and moisture transfer between the building envelope and its indoor ambience. In this work, a new methodology was developed to predict the overall behavior of buildings, which combines two simulation tools: COMSOL Multiphysics© and TRNSYS. The first software is used for the modeling of heat, air and moisture transfer in multilayer porous walls (HAM model: Heat, Air and Moisture transfer), and the second is used to simulate the hygrothermal behavior of the building (BES model: Building Energy Simulation). The combined software applications dynamically solve the mass and energy conservation equations of the two physical models. The HAM-BES coupling efficiency was verified. In this paper, the use of a coupled (HAM-BES) co-simulation for the prediction of the hygrothermal behavior of building envelopes is discussed. Furthermore, the effect of the 2D HAM modeling on relative humidity variations within the building ambience is shown. The results confirm the importance of the HAM modeling in the envelope on the hygrothermal behavior and energy demand of buildings.  相似文献   

17.
This study proposes a 3D visualized modeling method for DES of transport operations in construction. The 3D simulation model built is a virtual field scene with property settings. AR technology was further applied to allow the use of a real-world image as the modeling background, which pictorially presents the current status of the real site as a visual basis for modeling. A typical transport operation was analyzed to determine the component classes for modeling. Then the visual representation and attributes of each modeling component class were proposed, along with modeling rules to build the 3D simulation model. A prototype system with STROBOSCOPE as the simulation engine was developed for presenting the proposed modeling method. A set of transformation rules was proposed for converting a 3D simulation model to a STROBOSCOPE input file. The system automatically extracts the simulation output and animates the 3D model to visually demonstrate the simulation result.  相似文献   

18.
拱坝沿建基面上滑溃决的可变形离散元仿真   总被引:5,自引:1,他引:5       下载免费PDF全文
三维可变形离散元是模拟不连续介质力学行为的有效数值分析方法,由于其采用显式有限差分方法以及自动进行离散缝面的接触检测,适合于求解弹塑性、大变形和动力问题。本文首先介绍了三维可变形离散元的基本原理及特点,然后对1981年梅花拱坝的溃坝过程进行仿真研究。通过分析得知,梅花拱坝由于周边缝施工设计不当,沿周边缝抗剪强度过小,导致蓄水后坝肩推力促使坝体沿周边缝发生整体上滑,拱坝失去支撑最终坝体断裂并溃决。  相似文献   

19.
FLAC3D中锚杆破断失效的实现及应用   总被引:1,自引:0,他引:1  
 为解决FLAC3D中CABLE单元无法实现锚杆(索)破断失效的问题,提出锚杆(索)破断判据U(i)≥Umax(i),在此基础上建立CABLE单元杆体修正力学模型,修正模型增加了破断失效功能,并采用Fish语言编程,将修正模型嵌入到FLAC3D主程序中,实现锚杆破断失效的“单元化”,由局部到整体自发实现锚杆的宏观破断效果。进行锚杆杆体拉伸实验和锚喷支护效果对比的算例分析,结果表明:(1) 修正模型锚杆杆体拉伸荷载–位移曲线呈现出第三阶段破断失效的特性,符合杆体实际力学行为,达到了定量破断的预期效果,且响应灵敏;(2) 地应力超过一定值后,采用修正模型的支护方案中锚杆、锚索出现了破断,且呈现出的力学行为符合锚杆(索)破断失效力学机制,提高了工程模拟的准确度和精度;(3) 破断实现方法扩展了FLAC3D的应用范围,增强了模拟能力。同时分析指出了实现方法可达到的有益效果、存在的局限性及下一步研究方向。  相似文献   

20.
The present paper deals with modeling FRP strips bonded to concrete blocks and tested in pull-off. The investigation starts from the experimental observations obtained by means of an optical image-correlation measurement system which is able to monitor the 3D displacement components of a fine mesh of points on the surface of both the FRP strip and concrete block. Thus, refined measurements of both in-plane and out-of-plane displacements of the FRP strips are available.A brief overview of the key contributions available in the scientific literature on modeling the bond behavior of FRP strips glued to a concrete substrate is firstly proposed. Then, a novel model based on simulating the behavior of the FRP strip as a Bernoulli beam on a layer of springs is formulated. It is aimed at determining the 2D displacement field of the FRP strip during a pull-off test up to debonding which actually occurs in a mixed fracture mode. The model is firstly formulated within the linear range by assuming elastic behavior for the above mentioned springs. The nonlinear behavior due to the cracking of concrete beneath the adhesive interface is then introduced for simulating the above mentioned experimental results. In particular, a bilinear relationship is assumed between interface slips and shear stresses, as is generally accepted within the scientific literature. Furthermore, a damage model is considered for reducing the stiffness of the transverse springs and simulating the crack propagation at the adhesive-concrete interface. Although this is a simplified way of modeling the nonlinear behavior of concrete in shear/tension, it results in rather accurate simulations of the available experimental results. In fact, it can simulate accurately the overall behavior observed in three experimental tests on specimens characterized by significantly different mechanical properties of the strip. Since the model assumes a small set of mechanical parameters for describing the mechanical behavior of the adhesive FRP-concrete interface and results in a reasonable small set of equations, it can be easily employed for identifying the above mentioned mechanical behavior indirectly. Other numerical models already available in the scientific literature (especially those based on the theory of finite elements) for simulating the 2D displacement field in the debonding stage are generally based on much more equations and require a much higher computational effort which makes impractical their use in an indirect identification procedure like the one presented in this paper. In fact, one of the main results of this study consists in determining the distribution of normal (peeling) stresses throughout the adhesive-to-concrete interface. This stress component (Mode I) can neither be directly measured during the tests nor determined by the theoretical models usually adopted for simulating the fracturing behavior of FRP-to-concrete joints in the so-called fracture process in “mode II”. Finally, it was found that the shear stresses are significantly higher than the peeling ones and control the crack propagation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号