首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
孔隙水压力-围压作用下砂岩力学特性的试验研究   总被引:5,自引:4,他引:1  
利用MTS815岩石力学测试系统进行两类三轴压缩对比试验:一类是非充水条件下不同围压时的三轴压缩试验;一类是充水条件且围压保持恒定时不同孔隙水压力作用下的三轴压缩试验。基于莫尔-库仑准则,分析非充水条件下,不同围压σ3作用对细砂岩的峰值破坏强度σ1max及其对应的轴向应变ε1max、剪切强度τ和正应力σ等参数的影响;充水条件下,围压σ3恒定时不同孔隙水压力P作用对细砂岩的峰值破坏强度σ1max及其对应的轴向应变ε1max、有效峰值破坏强度σ1′max、有效围压3σ′、有效剪切强度τ′和有效正应力σ′等参数的影响。研究结果表明:(1)充水条件下,随着有效围压σ3′的增加,有效峰值破坏强度σ1′max呈增大的趋势,但在相同围压条件下随孔隙水压力P的增加有效峰值破坏强度σ1′max呈逐渐减小的趋势;(2)非充水条件下的τ-σ曲线和充水条件下的τ′-σ′曲线既可采用一元二次方程拟合,也可采用线性方程拟合,其相应强度曲线均能较好地符合莫尔-库仑准则;(3)有效剪切强度折减系数K可以较好地表征孔隙水压力P对有效剪切强度τ′的影响。  相似文献   

2.
为研究裂隙灰岩在全应力–应变过程中的力学特性和渗透性特点,对裂隙灰岩进行不同渗透压和围压组合下的水–力耦合试验,研究水–力耦合作用下裂隙灰岩的强度和变形特性,并定义全应力–应变过程中6个关键的渗透率值。试验结果表明:渗透压对裂隙灰岩的力学特性有较大影响,渗透压的存在降低了裂隙灰岩的强度和变形模量,加剧其侧向变形,水–力耦合作用下裂隙灰岩的强度特性可用莫尔–库仑屈服准则来表征;全应力–应变过程中,裂隙灰岩渗透率经历缓慢下降–缓慢增加–快速增长–小幅度下降4个阶段,这大致对应于全应力–应变过程中体积压缩阶段,近线性变形阶段,峰值点附近的破裂阶段和峰后残余强度阶段。在较低渗透压(2 MPa左右)下,上述相应关系吻合情况良好,而在较高渗透压(8 MPa以上)下,上述相应吻合关系存在偏差,渗透率下降阶段要短于体积压缩阶段;在较低渗透压(2 MPa左右)下体积压缩阶段的渗透率与体积应变之间的关系可用负指数函数来描述,而在较高渗透压(8 MPa以上)作用下,在体积压缩阶段的渗透率和体积应变之间的关系可用三次多项式来描述。  相似文献   

3.
为研究岩石峰后力学特性和本构关系,进行岩石的单、三轴压缩全程试验。基于不同阶段和不同破坏类型分别建立"分段本构模型"和"基于破坏类型的损伤软化统计模型"。分段本构模型通过屈服点、峰值点和残余强度点将岩石的应力应变划分为3个阶段,建立分段本构关系函数;基于破坏类型的损伤软化统计模型将岩石的压缩破坏划分为低围压(含单轴)下的环向张拉破坏、高围压下的剪切破坏以及中低围压下的张剪组合破坏,分别选取环向应变、剪切应变和体积应变作为损伤控制变量建立3种破坏类型的本构模型。结果表明,基于破坏类型的损伤软化统计模型能更好地描述岩石峰前及峰后的本构关系,揭示岩石内部损伤的发展过程。  相似文献   

4.
岩石剪切裂隙渗流特性试验与理论研究   总被引:3,自引:3,他引:0  
 通过在三轴应力条件下对丹江口库区辉绿岩进行剪切破坏得到剪切裂隙,然后对剪切裂隙进行不同围压和裂隙水压力(渗透压差)作用下渗透性能的试验研究。研究结果表明:绝大部分岩样在剪切破坏后会形成单条贯穿剪切裂隙,这种剪切裂隙的渗透系数与净围压的关系符合指数函数特征,且受环向应变影响很大,但受轴向应变影响较小;裂隙水压力对裂隙渗透系数影响明显,在相同净围压下,裂隙水压力越大,渗透系数越大,其主要原因是较大的裂隙水压力使裂隙两侧基岩产生附加变形,导致隙宽增加。基于试验数据和理论分析,根据三维应力下的裂隙–岩块位移模型推导考虑裂隙水压力的渗透系数计算公式,该公式可以较好地描述不同围压和裂隙水压力下实测渗透系数的变化趋势,并且公式中的参数均可根据简单的三轴压缩试验得到,计算结果与实测数据符合较好。  相似文献   

5.
为研究陷落柱骨架砂岩在不同围压及渗透压条件下的力学性质、渗流特性和声发射基本特征,采用岩石三轴渗流实验系统及AE21C声发射监测系统,开展三轴压缩条件下渗流试验,得到砂岩变形过程全应力–应变及渗透率演化曲线,同时获得砂岩变形、渗透率及声发射信号演化规律。研究结果表明:(1)陷落柱骨架砂岩具有明显的脆性特征。渗透压相同时,砂岩应力峰值强度、弹性模量及峰值应变随着围压的增大而增大;围压对砂岩宏观破坏特征影响明显,破坏形式由多裂纹剪切破坏逐渐变为单斜面剪切破坏。(2)砂岩总体呈现低渗透特性。砂岩渗透率演化规律与三轴加载应力–应变关系具有密切的相关性。渗透率总体呈现出逐渐减小,平稳发展,迅速增加的三阶段变化特征。(3)声发射变化特征与应力–应变及渗透率曲线特征基本一致。初期阶段,振铃计数率随围压升高而减小;裂隙发育扩展阶段,声发射振铃计数率呈现密集活跃状态并逐渐增大;失稳破坏阶段,振铃计数率迅速增大后又快速回落。试验结果对于研究岩溶陷落柱的稳定性及渗透性变化规律具有重要参考价值。  相似文献   

6.
温度对软黏土孔隙水压力和应力–应变关系特性具有重要影响。通过自主研发的温控三轴仪,研究恒温、升温和降温3种不同温度模式下软黏土孔隙水压力变化规律和应力–应变特性,升温和降温模式下重点研究不同时间间隔和不同围压对软黏土孔隙水压力的消散、应力–应变关系模式、剪切强度和弹性模量的影响。结果表明:在恒温模式下,温度从10℃增加至70℃,孔隙水压力消散速率变大消散量明显增加。在升温和降温模式下,孔隙水压力呈现波动性下降,时间间隔和围压的增大均能促进孔隙水压力的消散;在恒温模式下,随温度升高应力–应变模式由应变硬化转化为应变软化,剪切强度明显提高,弹性模量整体上呈现出先下降后上升的趋势。在升温模式和降温模式下,土体的应力–应变模式均呈现应变硬化,时间间隔和围压对提高土体的剪切强度和弹性模量具有明显影响。  相似文献   

7.
常规的应力应变试验难以清晰地反映砂岩在不同应力状态下的细观应变特性,然而,砂岩细观应变特性对一些工程的影响是非常巨大的。通过螺旋CT机以及与其配套的实时三轴加载和渗透压力设各对砂岩进行各种应力状态下的应变特性试验,反映出不同应力状态下的砂岩的应变特性有很大不同。结合CT图像和CT数的分析,对砂岩应变过程中的孔隙率的变化能直观地进行计算,以及对CT数方差的分析,能较简单地判断出砂岩的应变特性以及破坏模式。研究结果表明:(1)在单轴和三轴压力作用下,砂岩CT数方差变化剧烈的地方发生脆性变化,而方差比较稳定的地方发生塑性变化;(2)当有渗透水流作用时,砂岩应变特性与干砂岩的应变特性有明显差异,峰值强度显著增大,残余强度也明显增加;(3)砂岩在单轴干燥状态下是发生脆性破坏,而在有渗透压力和围压的情况下发生的是塑性破坏,有围压而没有渗透压作用时的破坏介于两者之间。  相似文献   

8.
在煤矿资源的地下开采工程活动中,煤岩处于轴压、围压和瓦斯气体相互耦合的复杂应力环境。为探究煤岩受压过程中的损伤变形及能量演化特征,利用含瓦斯煤热–流–固耦合三轴伺服渗流试验装置,开展煤岩在不同围压及不同瓦斯压力条件下的三轴压缩试验研究。基于连续损伤力学理论,从能量角度理论推导由非均质威布尔函数、能量耗散函数及塑性应变函数构成的损伤应力–应变函数,并在此基础上建立基于能量耗散的煤岩损伤本构模型。研究结果表明:(1)不同围压、不同瓦斯压力下煤岩应力–应变变化趋势及塑性变形行为具有阶段性特征。(2)对应不同的变形破坏阶段煤岩的能量演化趋势呈阶段性变化,应力峰值点处煤岩吸收的总能量随围压的增大而增大,弹性能及耗散能也呈现增大的趋势;随着瓦斯压力的上升,煤岩吸收的总能量和弹性能在应力峰值点处呈下降趋势,耗散能呈上升趋势。(3)构建围压及瓦斯压力效应下基于能量耗散的煤岩损伤本构模型,并通过试验验证该模型具有较好的合理性。(4)不同围压及瓦斯压力下煤岩能量耗散与损伤演化均呈"S"型演化趋势。  相似文献   

9.
常规的应力应变试验难以清晰地反映砂岩在不同应力状态下的细观应变特性,然而,砂岩细观应变特性对一些工程的影响是非常巨大的。通过螺旋CT机以及与其配套的实时三轴加载和渗透压力设备对砂岩进行各种应力状态下的应变特性试验,反映出不同应力状态下的砂岩的应变特性有很大不同。结合CT图像和CT数的分析,对砂岩应变过程中的孔隙率的变化能直观地进行计算,以及对CT数方差的分析,能较简单地判断出砂岩的应变特性以及破坏模式。研究结果表明:(1)在单轴和三轴压力作用下,砂岩CT数方差变化剧烈的地方发生脆性变化,而方差比较稳定的地方发生塑性变化;(2)当有渗透水流作用时,砂岩应变特性与干砂岩的应变特性有明显差异,峰值强度显著增大,残余强度也明显增加;(3)砂岩在单轴干燥状态下是发生脆性破坏,而在有渗透压力和围压的情况下发生的是塑性破坏,有围压而没有渗透压作用时的破坏介于两者之间。  相似文献   

10.
热力作用下岩石本构行为的研究对深部资源开采、地热资源开发、深埋长大地下工程设施建设等岩石工程问题具有重要意义。基于现有岩石损伤劣化统计本构模型研究,引入三参量Weibull分布、热损伤、Drucker-Prager屈服准则和残余强度修正系数,经过严密的数学推导,建立了考虑岩石起裂应力的热–力–损伤本构模型,并确定了其参数表达式。采用围压25 MPa、不同温度(20℃,60℃,130℃)条件下黑云母花岗岩三轴压缩试验结果对模型进行了验证。结果表明:模型理论曲线和试验曲线具有较高的吻合度,能够客观地反映岩石热力破裂应力应变全过程和残余强度,且参数物理意义明确。最后,将本构模型嵌入FLAC数值分析软件,对瑞典APSE隧道开挖过程的热力响应进行了数值分析,计算结果较好地反映了隧道现场围岩的破坏规律。  相似文献   

11.
为合理描述分析脆性煤体在三向应力状态下的应力–应变关系,对煤样进行三轴压缩试验。以已发生损伤破坏的微元体数目与总微元体数目之比表征损伤变量,在基于损伤力学理论和煤样内部微元强度服从Weibull分布的基础上,引入Mogi-Coulomb强度准则表征煤样微元强度随机分布的分布变量,建立煤样三维统计损伤本构关系,并分析其适用性。研究结果表明:(1)围压对煤样力学性质影响显著,煤样强度和弹性模量随围压的增高而增大,煤样破坏后的裂隙网络分形维数随围压的增高而减小,损伤程度降低;(2)分析数学简化算法求解模型参数的局限性,采用遗传算法对模型参数进行求解,参数m,F0,cn分别反映煤样的脆性程度、平均强度、残余强度;(3)根据本构关系对煤样试验应力–应变曲线进行拟合验证,理论曲线与试验曲线的拟合度均值为94.74%,表明本文所建立的本构模型可用于描述煤样的三维应力–应变关系,能够反映脆性煤体的变形特性。  相似文献   

12.
为了研究水–岩耦合作用对辽西花岗岩力学性质的影响,采用MTS–815岩石力学试验系统,通过对花岗岩试样施加不同的围压和孔隙水压力,对其变形破坏过程进行试验研究,分析水–岩耦合作用下辽西花岗岩的有效峰值强度、扩容现象、残余强度、峰后强度及其参数的演化规律。研究结果表明,有效峰值强度折减系数随孔隙水压力增大近似呈线性增长,但变化斜率随着围压增大而逐渐减小。在围压较小时孔隙水压对有效强度折减系数有明显的影响,在围压较大而孔隙水压较小时,施加应力压缩孔隙喉道抑制了孔隙水压对试样的作用。扩容起点是致密岩体水岩耦合作用增强的特征点,围压使得试样的扩容起点发生滞后,而孔隙水压力使得扩容起点提前发生,扩容现象与水岩耦合作用相互促进。水–岩耦合作用下试样的残余强度为对应状态峰值强度的21%~35%,Hoek-Brown常数随着围压的增大呈非线性增长,其值为3.5~5.0。峰后段试样的似内摩擦角变化不大,似黏聚力随着应变软化参数的增加有逐渐减小的趋势,而相同应变软化参数对应的似黏聚力则随着孔隙水压力的增大而减小,且似黏聚力、孔隙水压和应变软化参数间的关系可用3次样条曲面进行描述。  相似文献   

13.
煤样三轴压缩下变形和强度分析   总被引:4,自引:1,他引:4  
基于在伺服试验机对煤样的常规三轴压缩和三轴卸围压试验,分析了煤样在不同应力条件下的强度和变形特征。煤样在围压作用下裂隙闭合后利用摩擦仍可以承载,并且所有煤样峰前变形特性基本一致。三轴卸围压试验峰值处出现屈服平台,与常规三轴相比峰后塑性明显增强,煤样破坏时的轴向应变量受常规三轴压缩全程应力–应变曲线控制。常规三轴压缩和三轴卸围压试验的峰值强度与围压均成线性关系,围压影响系数基本相同,内摩擦角能够表征材料力学性质,与加载方式没有关系,但相同围压下三轴卸围压时试样的承载能力比常规三轴加载时明显偏低,表明煤样经历较高轴向载荷作用后存在局部损伤。  相似文献   

14.
为研究热-水-力耦合作用对岩石变形特性的影响,利用岩石THM耦合试验系统,对高温热处理后的岩石试样开展高孔隙水压力作用下三轴压缩试验,研究了热处理北山花岗岩在水-力耦合作用下的应力-应变曲线、力学特性、破坏特征以及损伤演化过程。研究结果表明,不同孔隙水压力作用下的s_1-e_1曲线在微裂隙压密和线弹性变形阶段基本重合,轴压增大到裂纹扩展阶段s_1-e_1曲线开始明显偏离,孔隙水压力越大,s_1-e_1曲线向1e轴偏离得越快,试样的峰值强度越低,峰值轴向应变越小,剪切破坏面倾角越陡,损伤演化的速度越快。研究成果表明:孔隙水压力对岩石损伤破坏的影响主要表现在加速岩石从裂纹不稳定扩展到宏观失稳的过程。  相似文献   

15.
针对黄土地区工程建设中的平面应变问题,该文利用西安理工大学真三轴仪,在不同围压条件下进行了不同含水率黄土竖向裂隙向大主应力加载的平面应变试验,研究了原状黄土的平面应变强度、变形特性,以及中主应力变化规律。表明低固结围压条件下,低含水率黄土的平面应力应变曲线呈原生结构损伤软化型;随着固结围压增大,压缩损伤增强,平面应力应变曲线呈次生结构形成硬化型。黄土原生结构损伤软化剪切过程伴随着剪胀变形;压缩损伤次生结构形成剪切过程伴随剪缩变形。平面应变固结竖向加载剪切过程中平面应变方向上的主应力由小主应力逐步转换为中主应力,中主应力系数由单调减小转变为单调增大,破坏时的中主应力系数介于0.15~0.35之间。不同含水率黄土平面应变剪切强度破坏线近似为线性关系;随着含水率的增大,粘聚力明显增大,内摩擦角基本不变。  相似文献   

16.
应力路径对饱和黄土孔压的影响研究   总被引:1,自引:1,他引:0  
利用SLB-1型应力应变控制式三轴剪切渗透试验仪,对陕西杨凌Q3饱和黄土进行了常规三轴压缩、减压三轴压缩和等p应力路径的各向等压固结不排水三轴试验,探讨和分析了应力路径对饱和黄土孔隙压力的影响,试验结果表明:不同应力路径作用下,饱和黄土的孔隙压力随着轴向应变的增大而不断增大;当土体的轴向应变较小时,孔隙压力基本上不受初始固结围压的影响,而当轴向应变超过5%之后,饱和黄土所受的初始固结围压越大,主应力差越大,其孔隙压力也会越大。  相似文献   

17.
为研究胶结充填体在煤矿深部的高地温环境下发生卸荷的力学特性,采用RTX–4000型岩石动态三轴仪,对不同温度(20℃,35℃和50℃)养护后的胶结充填体进行不同初始卸荷围压下的常规三轴卸围压试验,得到胶结充填体三轴卸荷全过程的偏应力–应变曲线,分析其变形、破坏特征及强度准则。研究结果表明:50℃养护后的胶结充填体内部产生的有害热应力易使胶结充填体卸荷的应力–应变曲线在峰后阶段出现微破裂现象,进而使得变形模量在随围压卸载的过程中也出现突降和逆向增长。胶结充填体卸荷破坏形式主要为局部张拉裂纹、剪切裂纹以及由热损伤和力学损伤共同造成的错位裂纹。Mogi-Coulomb强度准则能更好地表征胶结充填体在增轴压卸围压条件下的卸荷破坏强度特征;随养护温度的升高,胶结充填体的黏聚力先减小后增大,内摩擦角先增大后减小,黏聚力的变化同卸荷峰值强度的变化规律一致,黏聚力越大,卸荷峰值强度越高,表明黏聚力为影响胶结充填体卸荷峰值强度的主要因素。  相似文献   

18.
为探究"三高一扰动"特殊环境下切顶卸压无煤柱自成巷顶板砂岩切缝的动态力学性能,利用自主设计的岩土体动态冲击力学试验系统,对粉砂岩进行不同热–水–力耦合条件下的冲击压缩试验,研究动态应力–应变特征、动变形模量与加载率关系、以及加载率、轴压、围压、渗透水压、温度、吸收能与峰值应力和峰值应变的动态力学性能,利用扫描电镜(Scanning Electron Microscopy,SEM)研究粉砂岩试样断口面微观结构。研究结果表明:(1)在不同的动荷载作用下,粉砂岩试样的峰值应力和峰值应变均随轴压、围压、渗透水压、温度的升高而不断增大,脆性逐渐减弱而延性逐渐增强,变形破坏总体分为压密、弹性变形、塑性变形和破坏4个阶段;(2)动变形模量随着加载率的增大呈现出先增大后减小的发展趋势,动变形模量136GPa左右为一个临界阈值;(3)轴压、围压、水和温度对砂岩在热–水–力耦合特定环境下的动态冲击力学性能具有一定的增强效应;(4)随着峰值应变的增加,粉砂岩试样的吸收能呈线性增加趋势,其破碎变形与吸收能呈正相关。  相似文献   

19.
大岗山花岗岩动态力学特性的试验研究   总被引:1,自引:0,他引:1  
以大岗山花岗岩为例,分别进行静力三轴和动力三轴试验,分析花岗岩的抗压强度、弹性模量、泊松比以及相应的极限应变等重要参数与应变速率的关系。试验结果表明:不同围压下,随应变速率的增加,花岗岩的侧向破坏应变随应变速率的增加几乎保持不变,并且绝大部分统计结果值在0.002~0.004范围内;轴向破坏应变的增加幅度不明显;抗压强度增加,试验现象明显;弹性模量的提高幅度随围压的增加有减小的趋势;不同围压下花岗岩的泊松比与应变速率没有明确的关系。基于大岗山花岗岩静力三轴测试全过程应力–应变曲线和损伤力学分析,发现脆性岩石在不同围压下均以侧向损伤为主,通过回归拟合分析,建立大岗山花岗岩静力三轴压缩条件下的损伤演化方程。进一步根据损伤理论建立岩石动力损伤与静力损伤之间的关系,考虑动态强度与初始弹性模量的率相关性建立经验型的岩石动力损伤本构模型,可以作为研究地震荷载作用下岩体结构中应力波传播和衰减规律的基础。  相似文献   

20.
为探讨寒区边坡工程岩体受冻融循环和开挖卸荷双重作用的影响规律,对经历不同冻融循环次数的砂岩进行单轴、三轴压缩及峰前卸围压3种力学试验,重点研究冻融循环后砂岩在卸荷应力路径下的力学性能和破坏特征。试验结果表明:(1)冻融循环次数增加导致岩样峰值强度和弹性模量逐渐减小。(2)相同围压降低量下,岩样径向应变与体应变变化较大,轴向应变变化相对较小。(3)冻融损伤越大,径向应变和体应变对围压降低越敏感。(4)岩样变形模量在卸围压过程中逐渐降低,冻融循环次数越高降低速率越小,且初始变形模量越低。(5)泊松比在卸围压过程中逐渐增大,冻融循环次数越高增速越低,泊松比增长初期与体应变大致呈线性关系。(6)不同冻融循环次数下岩样单轴压缩破坏模式均为劈裂破坏;常规三轴压缩破坏模式均为剪切破坏,剪切带大致沿端面对角开展,并伴随局部岩块掉落;峰前卸围压破坏模式为介于单轴和常规三轴间的混合模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号