首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In the River Brett, Eastern England, over the period 1955-1998 there was a significant long-term decline in dissolved oxygen (DO), as well as increases in TON (total oxidised nitrogen) and SRP (soluble reactive phosphorus). Flow decreased from 1963 to 1998. Field studies in 1998-2000 showed increased pH and a gradient of DO beneath the filamentous alga Cladophora glomerata. DO decreased through the summer. Macrophytes accounted for 45% of community respiration at the study site, while sediment accounted for 36%. In container studies, muddy sediments had the highest maximum sediment oxygen demand (SOD), but canopies of C. glomerata and Lemna minor together increased the SOD by up to 90% over control samples. During periods of high temperature, abundant growths of C. glomerata and/or L. minor would increase the SOD of organic mud in river areas with shallow, ponded water, eventually leading to anoxic conditions and the release of nutrients from the sediment. If a river had large areas of mud, these processes could dramatically affect the river's oxygen budget, and hence its ecology.  相似文献   

2.
Laboratory-scale experiments were performed to develop a procedure for biological treatment of recalcitrant anaerobic industrial effluent (from ethanol and citric acid production) using first the microalga Chlorella vulgaris followed by the macrophyte Lemna minuscula. This recalcitrant dark-colored wastewater, containing high levels of organic matter and low pH, prevents the growth of microalgae and macrophytes, and therefore, could not be treated by them. Therefore, the wastewater was diluted to 10% of the original concentration with wash water from the production line. Within 4 days of incubation in the wastewater, C. vulgaris population grew from 5 x 10(5) to 2 x 10(6) cells/mL. This culture reduced ammonium ion (71.6%), phosphorus (28%), and chemical oxygen demand (COD) (61%), and dissolved a floating microbial biofilm after 5 days of incubation. Consequently, L. minuscule was able to grow in the treated wastewater (from 7 to 14 g/bioreactor after 6 days), precipitated the microalgal cells (by shading the culture), and reduced other organic matter and color (up to 52%) after an additional 6 days of incubation. However, L. minuscula did not improve removal of nutrients. This study demonstrates the feasibility of combining microalgae and macrophytes for bioremediation of recalcitrant industrial wastewater.  相似文献   

3.
The effect of mat density on duckweed (Lemna minor) growth was studied under controlled conditions: 12.5h a day light exposure and 342 mol m(-2) s(-1) light intensity at 20 degrees C. The plant growth was carried out in Hoagland medium for 7 days without harvesting. The results revealed a maximal biomass growth rate of 88 g-dry m(-2) (1,470 g-wet m(-2)) at an optimal initial mat density of 45 g-dry m(-2) (750 g-wet m(-2)), with removal rates for nitrogen (N) and phosphorus (P) of 483 mg-Nm(-2) d(-1) and 128 mg-Pm(-2) d(-1), respectively. A mathematical model that takes into account the mat density was developed in order to simulate the growth of Lemna minor under controlled eutrophication. Based on experiments carried out, the model exhibits a reliability of 89% . The model remains to be validated at the full-scale level.  相似文献   

4.
低溶氧下低C/N值生活污水的同步硝化反硝化   总被引:5,自引:1,他引:5  
采用改良的Orbal氧化沟中试系统处理低C/N值生活污水,考察了溶解氧浓度对同步硝化反硝化(SND)的影响。结果表明,当外沟溶解氧浓度为0.3mg/L时,约有29.97mg/L的总氮在氧化沟的外沟通过SND去除,外沟对COD的实际去除量为9.03mg/L,外沟的SND主要是利用微生物内贮有机碳源或生物吸附碳源进行的。控制氧化沟的外、中、内沟溶解氧浓度分别为0.3、0.5和2.0mg/L时,系统的SND率和总氮去除率最高。在优化的溶解氧条件下,系统对总氮的平均去除率和平均SND率分别为66.0%和42.6%,分别比优化前提高了13.8%和24.3%。  相似文献   

5.
Choi YC  Li X  Raskin L  Morgenroth E 《Water research》2008,42(13):3425-3434
Fixed bed biofilm reactors with granular activated carbon (GAC) or glass beads as support media were used to evaluate the influence of short-term (12h) and long-term (23 days) increases of influent dissolved oxygen (DO) concentrations on biological perchlorate removal. The goal was to evaluate the extent by which chemisorption of oxygen to GAC can enhance the stability of biological perchlorate reduction. Baseline influent concentrations were 50 microg/L of perchlorate, 2 mg/L of acetate as C, and 1mg/L of DO. Perchlorate removal in the glass bead reactor seized immediately after increasing influent DO concentrations from 1 to 4 mg/L since glass beads have no sorptive capacity. In the biologically active carbon (BAC) reactor, chemisorption of oxygen to GAC removed a substantial fraction of the influent DO, and perchlorate removal was maintained during short-term increases of influent DO levels up to 8 mg/L. During long-term exposure to influent DO concentrations of 8.5mg/L, effluent perchlorate and DO concentrations increased slowly. Subsequent exposure of the BAC reactor bed to low DO concentrations partially regenerated the capacity for oxygen chemisorption. Microbial analyses indicated similar microbial communities in both reactors, which confirmed that the differences in reactor performance during dynamic loading conditions could be attributed to the sorptive properties of GAC. Using a sorptive biofilm support medium can enhance biological perchlorate removal under dynamic loading conditions.  相似文献   

6.
一体式膜生物反应器的脱氮除磷效能研究   总被引:3,自引:2,他引:1  
采用一体式膜生物反应器处理城市生活污水,考察了不同溶解氧浓度下的脱氮除磷效果.结果表明,在低溶解氧条件下,膜生物反应器在有效去除有机物的同时还取得了较好的脱氮除磷效果.当控制反应器内溶解氧为0.5 ms/L左右时,进水COD为342~2 500 mg/L.出水COD平均为31.71 mg/L,对COD的去除率可达95%以上;进水TP为4.08~31.45 mg/L,出水TP70%.当溶解氧>2 mg/L时,进水COD为161.3~453.4 mg/L,出水COD为8.32~21.9 mg/L,去除率最高可达99.08%;进水TN为22.52~57.9 mg/L,出水TN为16.3l~24.49 mg/L,对TN的去除率大多为30%~40%;进水TP平均为4.48 mg/L,出水TP大部分在1.0 ms/L以上,去除率为48.07%~93.22%.  相似文献   

7.
Several microcosm experiments were run in parallel to evaluate the efficiency of microbial mats for crude oil degradation as compared with physico-chemical weathering. The oils used in the experiments constituted representative examples of those currently used for commercial purposes. One was aliphatic and of low viscosity (33.4 American Petroleum Institute degrees, degrees API) and the other was predominantly aromatic, with high sulphur content (ca. 2.7%) and viscosity (16.6 degrees API). After crude oil introduction, the microcosms were kept under cyclic changes in water level to mimic coastal tidal movements. The transformations observed showed that water weathering leads to more effective and rapid elimination of low molecular weight hydrocarbons than microbial mat metabolism, e.g. n-alkanes with chain length shorter than n-pentadecane or n-heptadecane, regular isoprenoid hydrocarbons with chain length lower than C16 or C18 or lower molecular weight naphthalenes. Microbial mats preserved these hydrocarbons from volatilization and water washing. However, hydrocarbons of lower volatility such as the C24-C30 n-alkanes or containing nitrogen atoms, e.g. carbazoles, were eliminated in higher proportion by microbial mats than by water weathering. The strong differences in composition between the two oils used for the experiments were also reflected in significant differences between water weathering and microbial mat biodegradation. Higher oil viscosity seemed to hinder the former but not the later.  相似文献   

8.
The photodegradation rates of seven chlorinated hydrocarbons; C2Cl4, C2HCl3, C2H4Cl2, 1,1,1-C2H3Cl3, 1,1,2-C2H3Cl3, CHCl3, CCl4 were investigated under the UV bandwidths of 185 and 254 nm in the presence and absence of dissolved oxygen (DO) in water. These hydrocarbons are possible contaminants of groundwater. This study confirms that the degradation rates of all chlorinated hydrocarbons are elevated in the absence of DO. This was especially apparent for chlorinated methane and ethane. Tetrachloroethylene's rate was the highest among the seven hydrocarbons regardless of the DO levels. It was clear that the concentration of intermediate trichloroethylene produced by photodegradation of tetrachloroethylene in the absence of DO was 1/50th of that in the presence of DO. Photodegradation in the presence of DO resulted in the formation of O3 and hydroxyl radicals. Alternatively, the photodegradation in the absence of DO resulted in the formation of organic radicals and a dissociation of the bond. It is discussed that DO acts as an "inner filter" or "scavenger" that reduces the UV light intensity in the photoreactor. Molecular O2 has absorption bands at 185 and 254 nm, the former being stronger. The processes of degradation depend on the degradation rate relative to the presence and absence of DO.  相似文献   

9.
The effect of operating conditions on aquatic worms eating waste sludge   总被引:3,自引:0,他引:3  
Several techniques are available for dealing with the waste sludge produced in biological waste water treatment. A biological approach uses aquatic worms to consume and partially digest the waste sludge. In our concept for a worm reactor, the worms (Lumbriculus variegatus) are immobilised in a carrier material. For correct sizing and operation of such a worm reactor, the effect of changes in dissolved oxygen (DO) concentration, ammonia concentration, temperature and light exposure were studied in sequencing batch experiments. DO concentration had an effect on both sludge consumption rate and sludge reduction efficiency. Sludge consumption rate was four times higher at DO concentrations above 8.1 mg/L, when compared to DO concentrations below 2.5 mg/L. Sludge reduction was 36 and 77% at these respective DO concentrations. The effect is most likely the result of a difference in gut residence time. An increase in unionised ammonia concentration drastically decreased the consumption rate. Ammonia is released by the worms at a rate of 0.02 mg N/mg TSS digested; therefore, replacing the effluent in the worm reactor is required to maintain a low ammonia concentration. The highest sludge consumption rates were measured at a temperature around 15 °C, whilst the highest TSS reduction was achieved at 10 °C. Not exposing the worms to light did not affect consumption or digestion rates. High temperatures (above 25 °C) as well as low DO concentrations (below 1 mg/L) in the worm reactor should be avoided as these lead to significant decreases in the number of worms. The main challenges for applying the worm reactor at a larger scale are the supply of oxygen to the worms and maintaining a low ammonia concentration in the worm reactor. Applying a worm reactor at a waste water treatment plant was estimated to increase the oxygen consumption and the ammonia load by 15-20% and 5% respectively.  相似文献   

10.
Twelve independent batch experiments (<9h) with fresh municipal activated sludge were conducted to assess the occurrence and the mechanisms of deflocculation under a temperature shift from 30 to 45 degrees C. In each experiment, a transient reactor (2 L) was subjected to the temperature shift and a control reactor was operated at a constant temperature of 30 degrees C. The occurrence of deflocculation was demonstrated by the increase in turbidity and in the concentrations of biopolymers in the sludge supernatant from the transient reactor. The maximum levels of proteins in the supernatants ranged from 53 to 81 mg/L, for DNA from 34 to 36 mg/L, for humic compounds from 20 to 40 mg/L, and for carbohydrates from 21 to 31 mg/L. All the biopolymer concentrations in the control reactor remained below 5-10 mg/L. The release of biopolymers was accompanied by an increase in sludge supernatant conductivity (16-32% increase, up to 1.20 mS/cm), soluble chemical oxygen demand (from 129 to 440 mg/L), total suspended solids (>25 mg/L up to 128 mg/L), and a decrease in the mixed liquor volatile suspended solids (up to 11%). The temperature shift was also found to inhibit microbial metabolism by reducing the sludge biomass substrate removal capacity, as measured by oxygen-uptake rates. The temperature shift had a marginal effect causing sludge lysis (as an increase in beta-galactosidase activity) and had no significant impact on sludge viability (live/dead ratio of bacterial cells). It was concluded that sludge deflocculation under a temperature shift from 30 to 45 degrees C involves the solubilisation of extracellular polymeric substances from the flocs and likely also floc fragmentation. In addition, sludge deflocculation and the inhibition of microbial metabolism explain the poor treatment performance observed in previous continuous reactors under similar temperature shifts.  相似文献   

11.
Rapid small-scale column tests (RSSCTs) were employed to evaluate the impact of the dissolved oxygen (DO) concentration in the water used to create steam on the reactivation of spent granular activated carbon (GAC) using three novel thermal reactivation procedures: steam-curing, steam-curing with ramped temperature, and steam pyrolysis reactivation. Evaluation of the physical properties of the reactivated carbon showed a change in mass and volume loss with a change in DO. Performance testing of the carbons for removal of the taste- and odor-causing compound 2-methylisoborneol (MIB) showed that MIB uptake generally increased as the DO concentration decreased. Decrease in MIB removal with an increase in surface acidity, a phenomenon found in the literature, may be responsible for the changes in adsorption performance, as the higher DO concentrations yielded carbons with higher total surface acidity. In addition, the steam-curing process, which was implemented at 375 degrees C (i.e. about 400 degrees C lower than typical reactivation temperatures) with a low DO concentration (i.e. 3-4mg/L) had comparable performance to the virgin carbon counterpart, which could manifest cost-savings due to the low temperature associated with this protocol compared to conventional reactivation. Furthermore, since the mass loss associated with this steam-curing protocol was low, less virgin carbon make-up would be required also improving the economic viability of this reactivation protocol.  相似文献   

12.
针对扬州六圩污水处理厂进水中工业废水所占比例较大,且存在较多难降解物质和毒性物质的情况,为确保工艺正常运行和出水水质的稳定达标,在生物池中安装在线监测仪表实时反映进水污染物负荷的变化和工艺的运行状况。在保证出水水质稳定达标的前提下,通过生物智能优化控制系统(BIOS)计算出内回流比和各廊道所需溶解氧,曝气控制系统(BACS)根据生物智能优化控制系统得出的溶解氧设定值,对鼓风机、空气阀门等设备进行调整,使曝气量既能满足生物池的溶解氧需要,又不浪费能源。BACS将追踪溶解氧的响应时间控制在30 min以内;在48 h连续控制周期内,西池第一和第二廊道溶解氧实时值与设定值的偏差在±0.5 mg/L之内的时间分别占88.40%、98.99%。通过两套系统的联动运行,在保证出水水质稳定的前提下为六圩污水处理厂降低了约19.4%的鼓风系统能耗。  相似文献   

13.
Ruiz G  Jeison D  Chamy R 《Water research》2003,37(6):1371-1377
The objective of this paper was to determine the best conditions for partial nitrification with nitrite accumulation of simulated industrial wastewater with high ammonia concentration, lowering the total oxygen needed in the nitrification step, which may mean great saving in aeration. Dissolved oxygen (DO) concentration and pH were selected as operational parameters to study the possibility of nitrite accumulation not affecting overall ammonia removal. A 2.5L activated sludge reactor was operated in nitrification mode, feeding a synthetic wastewater simulating an industrial wastewater with high ammonia concentration. During the start-up a pH of 7.85 and a DO of 5.5mg/L were used. The reactor was operated until stable operation was achieved at final nitrogen loading rate (NLR) of 3.3kgN- NH(4)(+)/m(3)d with an influent ammonia concentration of 610mg N-NH(4)(+)/L.The influence of pH was studied in continuous operation in the range of 6.15-9.05, changing the reactor pH in steps until ammonia accumulation (complete nitrification inhibition) took place. The influence of DO was studied in the same mode, changing the DO in steps from 5.5 to 0.5mg/L.The pH was not a useful operational parameter in order to accumulate nitrite, because in the range of pH 6.45-8.95 complete nitrification to nitrate occurs. At pH lower than 6.45 and higher than 8.95 complete inhibition of nitrification takes place. Setting DO concentration in the reactor at 0.7mg/L, it was possible to accumulate more than 65% of the loaded ammonia nitrogen as nitrite with a 98% ammonia conversion. Below 0.5mg/L of DO ammonia was accumulated and over a DO of 1.7mg/L complete nitrification to nitrate was achieved.In conclusion, it is possible under the conditions of this study, to treat high ammonia synthetic wastewater achieving an accumulation of at least 65% of the loaded nitrogen as nitrite, operating at a DO around 0.7mg/L. This represents a reduction close to 20% in the oxygen necessary, and therefore a considerable saving in aeration.  相似文献   

14.
A mathematical model describing nitrification (nitritification plus nitratification) and anaerobic ammonium oxidation (ANAMMOX) combined in a biofilm reactor was developed. Based on this model, a previously proposed one-reactor completely autotrophic ammonium removal over nitrite (CANON) process was evaluated for its temperature dependency and behaviour under variable inflow. The temperature-dependency of growth rates of the involved organisms is described by an Arrhenius-type equation. If temperature decreases, the activities of the involved organisms decrease. This means that thicker biofilms are needed or the ammonium surface load (ASL) to the biofilm should be decreased to maintain full N-removal at lower temperatures. Although the growth rate of nitrite oxidisers is higher than that of ammonium oxidisers at lower temperatures, these organisms can be effectively competed out due to a lower oxygen affinity. Variable inflow or dissolved oxygen (DO) concentration negatively affect the N-removal efficiency due to an unbalance between applied ASL load and required oxygen concentration. A variation of the dissolved oxygen concentration in a small range (+/- 0.2g O2/m3) has no significant influence on the process performance, which means that requirements on electrode sensitivity and a DO control scheme are not too stringent. A variable ASL has obvious influence on the process performance, at both constant and variable DO. A good adjustment of DO in accordance with the variable ASL is needed to optimise the N-removal efficiency. At T = 20 degrees C, an N-removal efficiency of 88% is possible at ASL = 0.5 g NH4+ - N/mr2 d, in a biofilm of at least 0.7 mm thickness and a DO level of 0.3 g O2/m3 in the bulk liquid.  相似文献   

15.
Chen JH  Hsu YC  Chen YF  Lin CC 《Water research》2003,37(12):2919-2928
The application of gas-inducing reactor to obtain high oxygen dissolution has been investigated at various operation conditions including agitation speed, temperature (20-40 degrees C), pressure (1.0-1.2 atm) and working liquid levels. Correlations regarding onset speed, agitation power consumption, gas holdup and oxygen mass transfer coefficient were established from experimental data. Onset speed can be accurately predicted with modified Froude number. The agitation power consumptions before and after onset speed is a function of Froude number and working liquid level. Gas holdup is an important factor influencing the mass transfer of oxygen after onset speed. In the study of mass transfer of oxygen (T=20 degrees C, P=1 atm), the highest dissolved oxygen concentration is as high as 39.34-39.92 mg x L(-1). The value of k(L)a is within 0.511-1.792 min(-1). The k(L)a is not affected by the oxygen gas pressure (1.0-1.2 atm). However, k(L)a increases with increasing temperature. The gas-inducing reactor of this study has higher k(L)a than the other type of gas-inducing reactor under the same unit volume power consumption. The pure oxygen utilization rate of this system can be as high as 100%.  相似文献   

16.
Dissolved oxygen (DO) and biochemical oxygen demand (BOD) concentration changes after an organic matter discharge into a river have been studied in the absence of oxygen transfer. According to these laboratory experiments, biodegradation of various organic compounds (glucose, glutamic acid, starch, ovalbumin and ethanol) in Seine river samples incubated at 15 30°C follow a biphasic behaviour. During a lag-phase of 10–20 h, DO decreases linearly (0.12 ppm h−1 at 20°C), whereas BOD is constant. During a subsequent aerobic exponential phase, DO and BOD uptake are proportional and increase exponentially with time (0.13 h−1 at 20°C). Using cell ATP as biomass indicator, the latter phase was shown to correspond to a cell division step. A kinetic model was developed for stimulating DO and BOD concentration changes after a waste water discharge at temperatures ranging between 15 and 30°C.  相似文献   

17.
CAST工艺处理城市污水的强化脱氮研究   总被引:8,自引:4,他引:8  
介绍了镇江征润州污水处理厂CAST工艺的运行情况,结合该厂实际运行状况开展了强化脱氮效果的生产性试验研究。结果表明,该工艺对COD、SS和TP的去除率均能维持在80%以上,但对氨氮的去除效果较差;在该厂运行模式下,控制进水/曝气前30min的DO〈0.5mg/L、进水/曝气后30min的DO浓度在1.0-3.0mg/L、纯曝气DO浓度在2.0-3.0mg/L,可以实现同步硝化反硝化和硝化/反硝化作用下的共同脱氮,使脱氮效率提高了57%左右;在控制进水/曝气后DO〈0.5mg/L、纯曝气DO浓度在1.0-3.0mg/L的条件下,可以实现同步硝化反硝化作用下的脱氮,但较难实现理想的脱氮效果。  相似文献   

18.
Huang L  Ju LK 《Water research》2007,41(9):1877-1884
Biological nitrogen removal via simultaneous nitrification and denitrification (SND) may be achieved in the single-tank bioreactors operated at low dissolved oxygen concentrations (DO). The continuous-stirred tank reactor (CSTR) configuration and the low DO environments employed are; however, more conducive to growth of filamentous bacteria and, thus, poor sludge settling in clarifiers. In this work, a synthetic wastewater was treated in bench-scale (approximately 6L) bioreactors under either cyclic or constant-rate aeration, at various sludge retention times (SRT) and DO. The objective was to evaluate the effects of these factors on the sludge settling indicated by sludge volume index. The cyclic aeration was carried out by alternating the aeration between a higher rate for 1h and a lower (or zero) rate for 30 min. In different experiments, the DO during the period of higher aeration (HDO) was 0.4, 0.6, 0.8, or 2.0 mg/L and the DO during lower aeration (LDO) was 0.0 or 0.2mg/L. The sludge established under the cyclic aeration was found to settle better than that under constant-rate aeration. Shortening SRT also improved the sludge settling significantly. NAD(P)H fluorescence profiles in these bioreactors were monitored using an online fluorometer. A procedure was developed to quantitatively describe the metabolic state of sludge's heterotrophic population on a 0-1 scale using the fluorescence profile, with "0" corresponding to the fully anoxic-denitrifying state and "1" to the fully aerobic state.  相似文献   

19.
Effect of backwashing on perchlorate removal in fixed bed biofilm reactors   总被引:2,自引:0,他引:2  
Choi YC  Li X  Raskin L  Morgenroth E 《Water research》2007,41(9):1949-1959
The influence of backwashing on biological perchlorate reduction was evaluated in two laboratory scale fixed bed biofilm reactors using 1- or 3-mm glass beads as support media. Influent perchlorate concentrations were 50 microg/L and acetate was added as the electron donor at a concentration of 2 mg C/L. Perchlorate removal was evaluated at various influent dissolved oxygen (DO) concentrations. Complete perchlorate removal was achieved with an influent DO concentration of 1mg/L resulting in bulk phase DO concentrations below the detection limit of 0.01 mg/L. The influence of increasing influent DO concentrations for 12 h periods was evaluated before and after individual backwash events. Partial perchlorate removal was achieved with an influent DO concentration of 3.5 mg/L before a strong backwash (bulk phase DO concentrations of approximately 0.2mg/L), while no perchlorate removal was observed after the strong backwash at the same influent DO level (bulk phase DO concentrations of approximately 0.8 mg/L). The immediate effect of backwashing depended on influent DO concentrations. With influent DO concentrations of 1 mg/L, strong backwashing resulted in a brief (<12 h) increase of effluent perchlorate concentrations up to 20 microg/L; more pronounced effects were observed with influent DO concentrations of 3mg/L. Daily weak backwashing had a small and, over time, decreasing negative influence on perchlorate reduction, while daily strong backwashing ultimately resulted in the breakdown of perchlorate removal with influent DO concentrations of 3 mg/L.  相似文献   

20.
Fenton oxidation of cork cooking wastewater--overall kinetic analysis   总被引:21,自引:0,他引:21  
In the present work, the possibility of using chemical oxidation through Fenton's reagent for the pre-treatment of cork cooking wastewaters was exploited. Aiming both the selection of the best operating conditions (pH, Fe2+:H2O2 ratio and initial H2O2 concentration) and the evaluation of the overall reaction kinetics, trials were performed in a batch reactor. Operating at pH = 3.2, H2O2 concentration = 10.6 g/L and Fe2+:H2O2 ratio = 1:5 (by weight), about 66.4% of total organic carbon (TOC), 87.3% of chemical oxygen demand (COD) and 70.2% of biochemical oxygen demand (BOD5) were removed and an increase of the BOD5/COD ratio from 0.27 to 0.63 was achieved. In the temperature range 20-50 degrees C, the best performance was obtained at 30 degrees C. The kinetic study was undertaken at different initial TOC concentrations and temperatures. Overall kinetics can be described by a second-order followed by a zero-order rate equation and the apparent kinetic constants at 30 degrees C are k = 2.3 x 10(-4) L/mg min and k0 = 26.0 mg/L min, respectively. The experiments performed at different temperatures confirmed the global kinetic model and allowed to calculate the global activation energy for the second-order reaction (70.7 kJ/mol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号