首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The SARS-CoV-2 pandemic has created a great demand for a better understanding of the spread of viruses in indoor environments. A novel measurement system consisting of one portable aerosol-emitting mannequin (emitter) and a number of portable aerosol-absorbing mannequins (recipients) was developed that can measure the spread of aerosols and droplets that potentially contain infectious viruses. The emission of the virus from a human is simulated by using tracer particles solved in water. The recipients inhale the aerosols and droplets and quantify the level of solved tracer particles in their artificial lungs simultaneously over time. The mobile system can be arranged in a large variety of spreading scenarios in indoor environments and allows for quantification of the infection probability due to airborne virus spreading. This study shows the accuracy of the new measurement system and its ability to compare aerosol reduction measures such as regular ventilation or the use of a room air purifier.  相似文献   

2.
Inhalation of expiratory droplets in aircraft cabins   总被引:1,自引:0,他引:1  
Gupta JK  Lin CH  Chen Q 《Indoor air》2011,21(4):341-350
Airliner cabins have high occupant density and long exposure time, so the risk of airborne infection transmission could be high if one or more passengers are infected with an airborne infectious disease. The droplets exhaled by an infected passenger may contain infectious agents. This study developed a method to predict the amount of expiratory droplets inhaled by the passengers in an airliner cabin for any flight duration. The spatial and temporal distribution of expiratory droplets for the first 3 min after the exhalation from the index passenger was obtained using the computational fluid dynamics simulations. The perfectly mixed model was used for beyond 3 min after the exhalation. For multiple exhalations, the droplet concentration in a zone can be obtained by adding the droplet concentrations for all the exhalations until the current time with a time shift via the superposition method. These methods were used to determine the amount of droplets inhaled by the susceptible passengers over a 4-h flight under three common scenarios. The method, if coupled with information on the viability and the amount of infectious agent in the droplet, can aid in evaluating the infection risk. PRACTICAL IMPLICATIONS: The distribution of the infectious agents contained in the expiratory droplets of an infected occupant in an indoor environment is transient and non-uniform. The risk of infection can thus vary with time and space. The investigations developed methods to predict the spatial and temporal distribution of expiratory droplets, and the inhalation of these droplets in an aircraft cabin. The methods can be used in other indoor environments to assess the relative risk of infection in different zones, and suitable measures to control the spread of infection can be adopted. Appropriate treatment can be implemented for the zone identified as high-risk zones.  相似文献   

3.
A six-week study of indoor and outdoor air pollutants was conducted in central New Jersey during the summer months of 1989. Three institutional settings for elderly and child care were investigated for the potential of acidic aerosol exposures. The indoor penetration by fine aerosols was < 70% at all three institutions. For locations with closed ventilation, it was 15-25% lower than for the open-window setting. Relative to outdoor levels, indoor acidic sulfate aerosols were 30-57% neutralized. Indoor levels of ammonia were = 10 × higher than corresponding outdoor values, which were consistent with calculated emission rates from human occupants. From estimates of total daily exposure, 75% of the daily dose of aerosol acidity for the elderly was due to indoor exposures. Doses received by the elderly and children ranged from 290 to 1100 nmoles of acid (15 to 55 ug as H2SO4) in a 24—h period with “worst-case” dose received by children as high as 3400 nmoles of acid in the daytime. These doses were comparable to the levels observed in clinical and epdemiological studies where health effects result. The daily dose of acid delivered to children was calculated to be 2 to 4 × higher than the dose to the elderly population. The calculations for children indicate that more than 90% of their dose on a summer day may come from outdoor exposures. These data suggest that indoor settings are protective, but children may still be at risk from summertime acidic aerosol exposure, depending on their activities outdoors.  相似文献   

4.
The role of airborne particles in the spread of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is well explored. The novel coronavirus can survive in aerosol for extended periods, and its interaction with other viral communities can cause additional virulence and infectivity. This baseline study reports concentrations of SARS-CoV-2, other respiratory viruses, and pathogenic bacteria in the indoor air from three major hospitals (Sheikh Jaber, Mubarak Al-Kabeer, and Al-Amiri) in Kuwait dealing with coronavirus disease 2019 (COVID-19) patients. The indoor aerosol samples showed 12–99 copies of SARS-CoV-2 per m3 of air. Two non-SARS-coronavirus (strain HKU1 and NL63), respiratory syncytial virus (RSV), and human bocavirus, human rhinoviruses, Influenza B (FluB), and human enteroviruses were also detected in COVID-positive areas of Mubarak Al Kabeer hospital (MKH). Pathogenic bacteria such as Mycoplasma pneumonia, Streptococcus pneumonia and, Haemophilus influenza were also found in the hospital aerosols. Our results suggest that the existing interventions such as social distancing, use of masks, hand hygiene, surface sanitization, and avoidance of crowded indoor spaces are adequate to prevent the spread of SARS-CoV-2 in enclosed areas. However, increased ventilation can significantly reduce the concentration of SARS-CoV-2 in indoor aerosols. The synergistic or inhibitory effects of other respiratory pathogens in the spread, severity, and complexity of SARS-CoV-2 need further investigation.  相似文献   

5.
The risk of cross‐infection is high when the susceptible persons are exposed to the pathogen‐laden droplets or droplet nuclei exhaled by infectors. This study proposes a jet integral model to predict the dispersion of exhaled contaminants, evaluating the exposure risk and determining a threshold distance to identify the direct and indirect exposures in both thermally uniform and stratified environments. The results show that the maximum concentration of contaminants exhaled by a bed‐lying infector clearly decreases in a short distance (<1.8 m) in a uniform environment, while it maintains high values in a long distance in a stratified environment. The lock‐up phenomenon largely weakens the decay of the concentration. The direct exposure of the receiver is determined primarily by the impact scope of the exhaled airflow, while the indirect exposure is mainly related to the ventilation rate and air distribution in the room. In particular, the distance of direct exposure is the longest (approximately 2 m) when the receiver's breathing height is at the lock‐up layer in a stratified environment. Our study could be useful for developing effective prevention measures to control cross‐infection in the initial stage of design of indoor layouts and ventilation systems.  相似文献   

6.
Chao CY  Wan MP 《Indoor air》2006,16(4):296-312
Dispersion characteristics of expiratory aerosols were investigated in an enclosure with two different idealized airflow patterns: the ceiling-return and the unidirectional downward. A multiphase numerical model, which was able to capture the polydispersity and evaporation features of the aerosols, was adopted. Experiments employing optical techniques were conducted in a chamber with downward airflow pattern to measure the dispersion of aerosols. Some of the numerical results were compared with the chamber measurement results. Reasonable agreement was found. Small aerosols (initial size 相似文献   

7.
Understanding of droplet transport in indoor environments with thermal effects is very important to comprehend the airborne pathogen infection through expiratory droplets. In this work, a well-resolved Large Eddy Simulation (LES) was performed to compute the concentration profiles of monodisperse aerosols in non-isothermal low-Reynolds turbulent flow taking place in an enclosed environment. Good care was taken to ensure that the main dynamical features of the continuous phase were captured by the present LES. The particle phase was studied in both Lagrangian and Eulerian frameworks. Steady temperature and velocity were measured prior to droplet emission. Evolution of aerosol concentration was measured by a particle counter. Results of the present LES were to compare reasonably well with the experimental findings for both phases.  相似文献   

8.
As the viral diseases such as Severe Acute Respiratory Syndrome (SARS) and Influenza A (H1N1) occur in many countries recently, the epidemic of those influenza viruses causes many human casualties. Moreover, the second infection from infected patients particularly within general hospitals frequently takes places due to improperly hospitalized and/or quarantined patients. Accordingly, it becomes a great concern to accommodate safer ventilation system in general hospital wards against such airborne transmitted viruses. It is also a recent trend that many urban general hospitals are designed and constructed as high-rises. If a virus is transmitted through uncontrolled air movement within a hospital and then infected other patients or healthy visitors, it might be impossible to control the spread of the disease. Thus research has been preceded scrutinizing stack effect on the indoor airborne virus transmission in large hospitals by conducting both the field measurement and numerical analysis according to the outdoor temperature and the releasing vertical points of the tracer gas assumed as a viral contaminant. In the field measurement of a high-rise hospital, the indoor airflow was affected by the stack effect of vertical chute of the building. The numerical simulation was verified by comparing its prediction results and the field measurement data. In result, very high possibility has witnessed that the airborne contaminant emitted from the infected patients in the lower floors could be transported to the higher floors through the airflow driven by the stack effect.  相似文献   

9.
10.
Li Y  Duan S  Yu IT  Wong TW 《Indoor air》2005,15(2):96-111
More than 300 residents of a private high-rise housing estate were infected with severe acute respiratory syndrome within a short period during the 2003 epidemic in Hong Kong. The outbreak occurred after the identified index patient visited a flat on a middle floor in Block E of the Amoy Gardens estate on two nights. Approximately 45% of the subsequently infected people resided in Block E, while the other 55% of infected cases mainly resided in six other blocks close to Block E. The distribution of the infected flats in Block E conformed to a non-uniform spatial pattern. Probable environmental causes for airborne transmission associated with the air movements between flats in Block E are identified. The well-established multi-zone airflow modeling method was used to analyze the virus-laden bio-aerosol dispersion between flats through door and window leakage areas in Block E under six different scenarios. The distribution of infection risk in Block E matched with the virus concentrations in flats predicted with the use of multi-zone modeling. Our study shows the importance of ventilation design in high-rise residential apartments. PRACTICAL IMPLICATIONS: The present study on the Amoy Gardens outbreak presented a scenario in which crowded living spaces might lead to infection disasters. There is a need to improve the current sanitary drainage design and maintenance standards to avoid any leakage of foul gas into the indoor environments. Our study revealed the need for a review of indoor air quality and ventilation design in buildings including offices, homes and hotels. The study has implications to public health in, for example, the control of other airborne respiratory infectious diseases such as influenza, and in bio-terror safety in buildings.  相似文献   

11.
Most of human exposure to atmospheric pollutants occurs indoors, and the components of outdoor aerosols may have been changed in the way before reaching indoor spaces. Here we conducted real-time online measurements of mass concentrations and chemical composition of black carbon and the non-refractory species in PM2.5 in an occupied office for approximately one month. The open-close windows and controlled dampness experiments were also performed. Our results show that indoor aerosol species primarily originate from outdoors with indoor/outdoor ratio of these species typically less than unity except for certain organic aerosol (OA) factors. All aerosol species went through filtration upon transport indoors. Ammonium nitrate and fossil fuel OA underwent evaporation or particle-to-gas partitioning, while less oxidized secondary OA (SOA) underwent secondary formation and cooking OA might have indoor sources. With higher particulate matter (PM) mass concentration outdoors than in the office, elevated natural ventilation increased PM exposure indoors and this increased exposure was prolonged when outdoor PM was scavenged. We found that increasing humidity in the office led to higher indoor PM mass concentration particularly more oxidized SOA. Overall, our results highlight that indoor exposure of occupants is substantially different from outdoor in terms of mass concentrations and chemical species.  相似文献   

12.
Reducing indoor exposure to influenza particles can be an important strategy to manage residential infections. Many portable air cleaning (PAC) technologies are currently employed in residential environments but very little research has been performed to evaluate and compare their performance in terms of particle removal associated with influenza. This study evaluates the effectiveness of portable air cleaners at removing airborne NaCl particles as an analogue to the influenza virus and applies the results to an IAQ mass balance model to evaluate the performance in controlling residential exposures and mitigating infection risks. Various devices representing different PAC technologies were tested using a pull down particle challenge in a full scale stainless steel chamber. Particle generation and measurement were conducted using a 6-jet atomizer and a paired aerodynamic particle sizer (APS)-scanning mobility particle sizer (SMPS), respectively. PAC incorporating HEPA filtration, electrostatic precipitation, ion generation and electret filtration were tested. We found that particle exposures released during a cough or sneeze event in a typical Quebec City residential room in Canada can significantly be reduced using HEPA, electrostatic precipitation and electret filtration PACs when compared with a situation where no PAC is being used. Modelling analysis demonstrates that the use of these PACs can mitigate the risks of influenza infection via airborne route for a caregiver or a spouse sharing the same room. The implications of this study are significant considering low ventilation rates of Quebec City residences.  相似文献   

13.
This paper identifies the “safe ventilation rate” for eliminating airborne viral infection and preventing cross-infection of severe acute respiratory syndrome (SARS) in a hospital-based setting. We used simulation approaches to reproduce three actual cases where groups of hospital occupants reported to be either infected or not infected when SARS patients were hospitalized in nearby rooms. Simulations using both computational fluid dynamics (CFD) and multi-zone models were carried out to understand the dilution level of SARS virus-laden aerosols during these scenarios. We also conducted a series of measurements to validate the simulations. The ventilation rates (dilution level) for infection and non-infection were determined based on these scenarios. The safe ventilation rate for eliminating airborne viral infection is to dilute the air emitted from a SARS patient by 10000 times with clean air. Dilution at lower volumes, specifically 1000 times, is insufficient for protecting non-infected people from SARS exposure and the risk of infection is very high. This study provides a methodology for investigating the necessary ventilation rate from an engineering viewpoint.  相似文献   

14.
The role of human occupancy as a source of indoor biological aerosols is poorly understood. Size-resolved concentrations of total and biological particles in indoor air were quantified in a classroom under occupied and vacant conditions. Per-occupant emission rates were estimated through a mass-balance modeling approach, and the microbial diversity of indoor and outdoor air during occupancy was determined via rDNA gene sequence analysis. Significant increases of total particle mass and bacterial genome concentrations were observed during the occupied period compared to the vacant case. These increases varied in magnitude with the particle size and ranged from 3 to 68 times for total mass, 12-2700 times for bacterial genomes, and 1.5-5.2 times for fungal genomes. Emission rates per person-hour because of occupancy were 31 mg, 37 × 10(6) genome copies, and 7.3 × 10(6) genome copies for total particle mass, bacteria, and fungi, respectively. Of the bacterial emissions, ~18% are from taxa that are closely associated with the human skin microbiome. This analysis provides size-resolved, per person-hour emission rates for these biological particles and illustrates the extent to which being in an occupied room results in exposure to bacteria that are associated with previous or current human occupants. PRACTICAL IMPLICATIONS: Presented here are the first size-resolved, per person emission rate estimates of bacterial and fungal genomes for a common occupied indoor space. The marked differences observed between total particle and bacterial size distributions suggest that size-dependent aerosol models that use total particles as a surrogate for microbial particles incorrectly assess the fate of and human exposure to airborne bacteria. The strong signal of human microbiota in airborne particulate matter in an occupied setting demonstrates that the aerosol route can be a source of exposure to microorganisms emitted from the skin, hair, nostrils, and mouths of other occupants.  相似文献   

15.
Abstract Airborne disease transmission has always been a topic of wide interests in various fields for decades. Cough is found to be one of the prime sources of airborne diseases as it has high velocity and large quantity of droplets. To understand and characterize the flow dynamics of a cough can help to control the airborne disease transmission. This study has measured flow dynamics of coughs with human subjects. The flow rate variation of a cough with time can be represented as a combination of gamma‐probability‐distribution functions. The variables needed to define the gamma‐probability‐distribution functions can be represented by some medical parameters. A robust multiple linear regression analysis indicated that these medical parameters can be obtained from the physiological details of a person. However, the jet direction and mouth opening area during a cough seemed not related to the physiological parameters of the human subjects. Combining the flow characteristics reported in this study with appropriate virus and droplet distribution information, the infectious source strength by coughing can be evaluated.

Practical Implications

There is a clear need for the scientific community to accurately predict and control the transmission of airborne diseases. Transportation of airborne viruses is often predicted using Computational Fluid Dynamics (CFD) simulations. CFD simulations are inexpensive but need accurate source boundary conditions for the precise prediction of disease transmission. Cough is found to be the prime source for generating infectious viruses. The present study was designed to develop an accurate source model to define thermo‐fluid boundary conditions for a cough. The model can aid in accurately predicting the disease transmission in various indoor environments, such as aircraft cabins, office spaces and hospitals.  相似文献   

16.
The indoor environment of a mechanically ventilated hospital building controls infection rates as well as influences patients’ healing processes and overall medical outcomes. This review covers the scientific research that has assessed patients’ medical outcomes concerning at least one indoor environmental parameter related to building heating, ventilation, and air conditioning (HVAC) systems, such as indoor air temperature, relative humidity, and indoor air ventilation parameters. Research related to the naturally ventilated hospital buildings was outside the scope of this review article. After 1998, a total of 899 papers were identified that fit the inclusion criteria of this study. Of these, 176 papers have been included in this review to understand the relationship between the health outcomes of a patient and the indoor environment of a mechanically ventilated hospital building. The purpose of this literature review was to summarize how indoor environmental parameters related to mechanical ventilation systems of a hospital building are impacting patients. This review suggests that there is a need for future interdisciplinary collaborative research to quantify the optimum range for HVAC parameters considering airborne exposures and patients’ positive medical outcomes.  相似文献   

17.
This study compared the performance of four bioaerosol samplers, the Reuter Centrifugal Air Sampler, the Andersen N6 single stage, the Surface Air System 90, and the Air-o-Cell, in measurements for airborne fungal propagules collected in 75 public building sites without prior knowledge of water damage or mold problems in British Columbia, Canada. The samplers had differences in detection limits, reproducibility, and overall yield. However, high and significant correlations between samplers (indoor samples: Pearson r = 0.60-0.85, P < 0.001) suggest that relative performances between samplers were reasonably consistent. These results indicate that fungal airborne concentration data are dependent on the methods used for assessment, and introduce additional variability in exposure assessment studies. PRACTICAL IMPLICATIONS: In the absence of a standard protocol for sampling bioaerosols, the interpretation of aerosol data reported in indoor air quality studies is entirely dependent on an appreciation of the sampling characteristics of commonly used instrumentation. Although a number of comparative studies have been undertaken in the laboratory, only a few studies have made reported comparison data under field conditions. This study compared three culturable sampling devices, the Andersen N6, SAS 90, and RCS, and one particulate sampling device, the Air-o-Cell, in offices and public areas in a variety of buildings, under conditions of forced air or natural ventilation. The concentrations of fungal aerosols collected during simultaneous sample collection were highly correlated, yet varied by orders of magnitude. The performance of these devices must be carefully considered before a standard protocol can be promulgated.  相似文献   

18.
Residences represent an important site for bioaerosol exposure. We studied bioaerosol concentrations, emissions, and exposures in a single‐family residence in northern California with 2 occupants using real‐time instrumentation during 2 monitoring campaigns (8 weeks during August‐October 2016 and 5 weeks during January‐March 2017). Time‐ and size‐resolved fluorescent biological aerosol particles (FBAP) and total airborne particles were measured in real time in the kitchen using an ultraviolet aerodynamic particle sizer (UVAPS). Time‐resolved occupancy status, household activity data, air‐change rates, and spatial distribution of size‐resolved particles were also determined throughout the house. Occupant activities strongly influenced indoor FBAP levels. Indoor FBAP concentrations were an order of magnitude higher when the house was occupied than when the house was vacant. Applying an integral material‐balance approach, geometric mean of total FBAP emissions from human activities observed to perturb indoor levels were in the range of 10‐50 million particles per event. During the summer and winter campaigns, occupants spent an average of 10 and 8.5 hours per day, respectively, awake and at home. During these hours, the geometric mean daily‐averaged FBAP exposure concentration (1‐10 μm diameter) was similar for each subject at 40 particles/L for summer and 29 particles/L for winter.  相似文献   

19.
The level of exposure to human exhaled contaminants in a room depends not only on the air distribution system but also on people's different positions, the distance between them, people's activity level and height, direction of exhalation, and the surrounding temperature and temperature gradient. Human exhalation is studied in detail for different distribution systems: displacement and mixing ventilation as well as a system without mechanical ventilation. Two thermal manikins breathing through the mouth are used to simulate the exposure to human exhaled contaminants. The position and distance between the manikins are changed to study the influence on the level of exposure. The results show that the air exhaled by a manikin flows a longer distance with a higher concentration in case of displacement ventilation than in the other two cases, indicating a significant exposure to the contaminants for one person positioned in front of another. However, in all three cases, the exhalation flow of the source penetrates the thermal plume, causing an increase in the concentration of contaminants in front of the target person. The results are significantly dependent on the distance and position between the two manikins in all three cases. PRACTICAL IMPLICATIONS: Indoor environments are susceptible to contaminant exposure, as contaminants can easily spread in the air. Human breathing is one of the most important biological contaminant sources, as the exhaled air can contain different pathogens such as viruses and bacteria. This paper addresses the human exhalation flow and its behavior in connection with different ventilation strategies, as well as the interaction between two people in a room. This is a key factor for studying the airborne infection risk when the room is occupied by several persons. The paper only takes into account the airborne part of the infection risk.  相似文献   

20.
Air quality in indoor environments can have significant impacts on people's health, comfort, and productivity. Particulate matter (PM; also referred to as aerosols) is an important type of air pollutant, and exposure to outdoor PM has been associated with a variety of diseases. In addition, there is increasing recognition and concern of airborne transmission of viruses, including severe acute respiratory syndrome corona-virus 2 (SARS-CoV-2), especially in indoor environments. Despite its importance, indoor PM data during the COVID-19 pandemic are scarce. In this work, we measured and compared particle number and mass concentrations in aircraft cabins during commercial flights with various indoor environments in Atlanta, GA, during July 2020, including retail stores, grocery stores, restaurants, offices, transportation, and homes. Restaurants had the highest particle number and mass concentrations, dominated by cooking emissions, while in-flight aircraft cabins had the lowest observed concentrations out of all surveyed spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号