首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为将全陶瓷微胶囊封装(FCM)燃料应用于小型压水堆,对FCM燃料组件开展了可燃毒物中子学设计与分析。通过寿期初引入负反应性、寿期内消耗速率和寿期末残留3个方面,对弥散在SiC基体中的弥散型可燃毒物Gd_2O_3、Er_2O_3、Sm_2O_3、Eu_2O_3、Dy_2O_3及HfO_2进行评价。FCM燃料中TRISO颗粒核芯直径达800μm,燃料颗粒自屏效应强烈,在RMC程序中引入随机介质计算功能,对FCM燃料进行随机几何建模,保证了反应性计算精度。分析表明:Er_2O_3可作为FCM燃料堆芯的候选可燃毒物,Gd_2O_3和Eu_2O_3需结合堆芯开展进一步研究,Sm_2O_3、Dy_2O_3及HfO_2的反应性惩罚过大,不适合作为FCM燃料可燃毒物。  相似文献   

2.
大型压水堆装载50% MOX燃料方案初步研究   总被引:1,自引:0,他引:1  
在保持堆内构件设计、燃料组件机械设计以及控制棒设计和布置不变的前提下,对大型压水堆应用MOX燃料进行初步研究。在遵守与UO_2堆芯相同的核设计准则的基础上,开展装载50%MOX燃料的堆芯燃料管理方案研究及核特性分析。分析结果表明,堆芯主要物理参数满足设计准则要求,能够实现堆芯运行和控制相关要求,具备装载50%MOX燃料的能力。混合堆芯的有效缓发中子份额比UO_2堆芯有所减小,其对弹棒事故的影响应予以重点关注。  相似文献   

3.
CNP1500是一个轻水慢化和冷却的四环路压水堆核电站.反应堆堆芯由205个AFA-3GXL燃料组件组成;堆芯冷态活性段高度为426.7cm;等效直径为347.0cm.反应堆热功率输出为4250MW,平均线功率密度为179.5W/cm.计算结果表明,平衡循环堆芯的循环长度为470等效满功率天;各循环堆芯所有状态下的慢化剂温度系数均为负值;各循环热态满功率、无控制棒、平衡氙状态下的核焓升因子F△H都低于限值;最大卸料组件燃耗小于55000MW·d/t(U);各循环寿期末停堆裕量满足设计准则;低泄漏堆芯装载降低了反应堆压力容器的辐照损伤,有利于延长压力容器的使用寿命.本文介绍了四环路压水堆核电站堆芯燃料管理设计方案及主要计算结果.  相似文献   

4.
《核动力工程》2017,(5):119-122
以采用AFA3G燃料组件的中国改进型三环路压水堆(CPR1000)核电机组为研究对象,对装入反应堆后的正常燃料组件和修复燃料组件的堆芯物理和热工性能进行分析评估。结果表明:燃料组件内更换1根燃料棒对燃料组件反应性的影响小于-0.03%,该影响可以忽略;修复的燃料组件在换棒位置周围的燃料棒相对功率略微升高约5.6%;燃料组件内更换1根不锈钢棒对燃料组件的相对功率影响约为0.1372%~0.2698%,对组件燃耗的影响大约为0.11%,对堆芯慢化剂温度系数的影响大约为0.03%,对组件出口慢化剂温度的影响大约为0.03%;对堆芯功率峰因子、堆芯临界硼浓度、堆芯停堆裕量和堆芯出口慢化剂温度基本没有影响。  相似文献   

5.
CNP1500是四环路、轻水慢化和冷却的压水堆核电站,反应堆堆芯由205个AFA-3GXL燃料组件组成,堆芯冷态活性段高度为426.7 cm,等效直径为347.0 cm。反应堆热功率输出为4 250 MW,平均线功率密度为179.5 W/cm。平衡循环堆芯的循环长度为470有效满功率天,各循环堆芯所有状态下的慢化剂温度系数均为负值;各循环热态满功率、无控制棒、平衡氙状态下的核焓升因子FΔH都低于限值;最大卸料组件燃耗小于55 000 MW.d/tU;各循环寿期末停堆裕量满足设计准则;低泄漏堆芯装载降低了反应堆压力容器的辐照损伤,有利于延长压力容器的使用寿命。叙述了CNP1500核电站堆芯燃料管理设计方案及主要计算结果。  相似文献   

6.
为解决超临界水冷堆中子慢化不足的问题,采用在燃料组件中设置“水棒”或者加入固体慢化剂的设计方法,同时堆芯冷却剂采用多流程流动方案,导致燃料组件和堆芯结构复杂化,并向堆内引入较多强中子吸收结构材料。因而基于CSR1000研究结果,开展了简化超临界水冷堆燃料组件及堆芯结构设计。研究结果有效简化了超临界水冷堆燃料组件和堆芯结构。   相似文献   

7.
采用压水堆17×17燃料组件模型,用燃料组件参数计算程序DRAGON分别对混合堆增殖钍燃料组件和全铀组件的中子学特性进行了研究,分析组件的燃料温度系数、慢化剂温度系数及其与燃耗的关系。计算结果表明,混合堆增殖钍燃料组件和全铀组件的中子特性相似,但钍燃料组件中的乏燃料组件中的次锕系核素(MA)的含量明显减少。  相似文献   

8.
《核动力工程》2016,(6):150-154
研究了利用有限元分析软件ABAQUS对全陶瓷微封装燃料(FCM燃料)芯块进行热学性能分析的方法,并对FCM燃料芯块和传统UO_2芯块的热学性能进行了对比分析。研究结果表明:FCM芯块温度分布趋势与UO_2芯块相同,但具有较大不均匀性;典型压水堆运行工况下,FCM燃料芯块的燃料温度远小于UO_2芯块的温度;在相同线功率密度下,FCM芯块温度对燃耗变化不敏感;在相同燃耗下,FCM芯块随线功率密度增加温度升高的速率相比UO_2芯块更慢。  相似文献   

9.
针对长寿期堆芯的应用需求,开展了提高小型压水堆堆芯寿期研究。以棒状燃料为对象,对不同栅格尺寸和不同可燃毒物的选取进行计算,得出小型压水堆堆芯寿期相关影响因素。通过对不同尺寸的燃料栅格进行输运-燃耗计算,得到燃耗最佳栅格尺寸。以燃耗最佳栅格尺寸建立组件,并选择转换性能好的锕系核素~(240)PuO_2作为可燃毒物,利用~(240)Pu吸收中子转换成易裂变核素~(241)Pu的特性,对堆芯实现反应性控制和寿期延长。本研究通过对燃料栅格尺寸和可燃毒物的合理选择,提高了燃料利用率,达到延长堆芯寿期的目的。  相似文献   

10.
为将全陶瓷微胶囊封装(FCM)燃料应用于小型压水堆,对FCM燃料组件开展了可燃毒物中子学设计与分析。通过寿期初引入负反应性、寿期内消耗速率和寿期末残留3个方面,对弥散在SiC基体中的弥散型可燃毒物Gd2O3、Er2O3、Sm2O3、Eu2O3、Dy2O3及HfO2进行评价。FCM燃料中TRISO颗粒核芯直径达800 μm,燃料颗粒自屏效应强烈,在RMC程序中引入随机介质计算功能,对FCM燃料进行随机几何建模,保证了反应性计算精度。分析表明:Er2O3可作为FCM燃料堆芯的候选可燃毒物,Gd2O3和Eu2O3需结合堆芯开展进一步研究,Sm2O3、Dy2O3及HfO2的反应性惩罚过大,不适合作为FCM燃料可燃毒物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号